Επιταχυντές και Ανιχνευτές στην Πυρηνική και Σωματιδιακή Φυσική

Κ.Κορδάς Δ. Σαμψωνίδης

Διαλεξη 7η

Ανιχνευτές Αερίου

4. Time Projection chambers (TPC), micro-pattern gas detectors, κλπ

(στο επόμενο μάθημα που θα κάνουμε και όλες τις ασκήσεις της εργασίας #4 για τις οποίες ο Tavernier έχει λύσεις στο τέλος!)

TPC (Time Projection Chamber)

Micro-strip Gas Counters (MSGC)

Detection of electron signal from MPGD: no signal broadening by induction

 \Rightarrow short & narrow signals

If signal collected on one pad \Rightarrow No centre-of-gravity

Possible Solutions

- Smaller pads
- Replace pads by bump bonds of pixel readout chips
- Capacitive or resistive coupling
 of adjacent pads

Time Projection Chamber

New concept for gas amplification at the end flanges:

Replace proportional wires with Micro Pattern Gas Detectors

GEM or Micromegas

- Finer dimensions
- Two-dimensional symmetry (no E×B effects)
- Only fast electron signal
- Intrinsic ion feedback suppression

GEM

Gas Electron Multiplier (GEM) (F. Sauli 1996)

- 50 mm capton foil, double sided copper coated
- 75 mm holes, 140 mm pitch
- GEM voltages up to 500 V yield 10⁴ gas amplification

For TPC use GEM towers for safe operation, e.g. COMPASS

140 μmØ 75 μm

31

Micromegas (Y. Giomataris 1996)

- Asymmetric parallel plate chamber
- with micromesh
- Saturation of Townsend coefficient
- mild dependence of amplification ٠
- on gap variations ٠
- Ion feedback suppression

O/

x-axis [cm]

32

>

MICro MEsh GAseous Structure (MICROMEGAS)

FAST, HIGH RATES, HIGH SPATIAL RESOLUTION NEW TECHNIQUES FOR MASS PRODUCTION BUT: only single-stage → sometimes gain limits Micromesh Gaseous Chamber: a micromesh supported by 50-100 mm insulating pillars

Multiplication (up to 10⁵ or more) takes place between the anode and the mesh and the charge is collected on the anode (one stage)

Small gap: fast collection of ions

MICROMEGAS time resolution (single photons)

Fig. 11. Time distribution of the anode discriminated current signal of single photoelectrons for the CsI photoconverter.

Physical time jitters for UV photons \rightarrow electron diffusion in the gas and noise.

J. Derre et al., NIM A449 (2000) 314

Micromegas Time Resolution : $\sigma \sim 700 \text{ ps}$

34

MICROMEGAS as TPC

A time resolution of ~1 ns results in space points with a resolution along the drift direction of ~50 μm

T. Alexopoulos et al, NIM A617 (2010) 161

MICROMEGAS + Timepix CMOS Pixel Chip

before InGrid production

M. Chefdeville et al, NIMA556(2006) 490

50 Mm

11 22 SEI

X300

8kU

19 21 SEI

20µm

X600

6kU

Resistive Plate Chambers

HV: 7-12 KV

Signal : ~300mV (μεγάλο)

Πολύ καλή χρονική ακρίβεια

Μεγάλο νεκρό χρόνο ΑΛΛΑ εντοπισμένο χωρικά στην περιοχή του σήματος Ο υπόλοιπος θάλαμος ειναι ενεργός.