## 

 Etıtaxuvtáv $\Delta p$ ．Гıớvvŋ̧ ПАПАФІЛІППОҮ

Т $\mu \eta ́ \mu \alpha$ Фибıкŋ́ऽ
 Eגpıvó $\varepsilon \xi \dot{\alpha} \mu \eta$ vo 2018

## ongitudinal dynamics

■ RF acceleration
■Energy gain and phase stability
■Momentum compaction and transition
■Equations of motion
$\square$ Small amplitudes
$\square$ Longitudinal invariant
Separatrix
■ Energy acceptance
■ Stationary bucket
$\boldsymbol{■}^{\text {Adiabatic damping }}$

- The use of RF fields allows an arbitrary number of accelerating steps in gaps and electrodes fed by RF generator
- The electric field is not longer continuous but sinusoidal alternating half periods of acceleration and deceleration
- The synchronism condition for RF period $T_{R F}$ and particle velocity $v$
$L=v T_{R F} / 2=\beta c \frac{\pi}{\omega_{R F}}=\beta \lambda / 2$



## Energy gain

 synchronous particle passes at the middle of the gap $g$, at time $t=$ 0 , the energy is

$$
W(r, t)=q \int E_{z} d z=q \int_{-g / 2}^{g / 2} E_{0} \cos \left(\omega_{R F} \frac{z}{v}+\phi_{s}\right) d z
$$

And the energy gain is $\quad \Delta W=q E_{0} \int_{-q / 2}^{8 / 2} \cos \left(\omega_{\text {RF }} \frac{z}{v}\right) d z$
and finally $\quad \Delta W=q V \frac{\sin \Theta / n^{2}}{\Theta / 2}$ wheqVatsit time
factor defined as

$$
T=\frac{\sin (\omega g / 2 v)}{\omega g / 2 v} \int_{g / 2} E(0, z) \cos \omega t(z) d z
$$

It can be shown that in general

$$
T=\frac{-g / 2}{\int_{-g / 2}^{g / 2} E(0, z) d z}
$$

## Phase stability

- Assume that a synchronicity condition is fulfilled at the phase $\phi_{s}$ and that energy increase produces a velocity increase
- Around point $\mathrm{P}_{1}$, that arrives earlier $\left(\mathrm{N}_{1}\right)$ experiences a smaller accelerating field and slows down
- Particles arriving later (M1) will be accelerated more
- A restoring force that keeps particles oscillating around a stable phase called the synchronous phase $\phi_{s}$
- The opposite happens around point P2 at $\pi$ - $\phi_{s}$ i.e. M2 and N 2 will further separate



## RF de-focusing

In order to have stability, the time derivative of the Voltage and the spatial derivative of the electric field should satisfy

$$
\frac{\partial V}{\partial t}>0 \Rightarrow \frac{\partial E}{\partial \tau}<0
$$

In the alst tnce of electire charge the field is given by N .


$\nabla \vec{E}=0 \Rightarrow \frac{\partial E_{x}}{\underline{\partial}}+\underline{\partial E_{z}}=0 \Rightarrow \underline{\partial E_{x}}>0$
where $x$ represendes the generigy transverse direction.
External focusing is required by using quadrupoles or solenoids

## Momentum compaction

- Off-momentum particles on the dispersion orbit travel in a different path length than on-momentum particles
- The change of the path length with respect to the momentum spread is called momentum compaction

$$
\alpha_{c}=\frac{\Delta C}{C} / \frac{\Delta P}{P}
$$

- The change of circumference is

$$
\Delta C=\oint D \frac{\Delta P}{P} d \theta=\oint D \frac{\Delta P}{P} \frac{d s}{\rho}
$$

- So the momentum compaction is

$$
\alpha_{c}=\frac{1}{C} \oint \frac{D(s)}{\rho(s)} d s=\left\langle\frac{D(s)}{\rho(s)}\right\rangle
$$

## Transition energy

- The revolution frequency of a particle is

$$
f=\frac{v}{2 \pi \rho}=\frac{\beta c}{2 \pi \rho}
$$

- The change in frequency is $\frac{\Delta f}{f}=\frac{\Delta \rho}{\rho}-\frac{\Delta \beta}{\beta}$
- From the relativistic momentum

$$
P c=\beta E^{\mathrm{e}} \text { have }
$$

$\frac{\Delta P}{P}=\frac{\Delta \beta}{\beta}+\frac{\Delta E}{E}$ tor wil $\beta^{2} \frac{\Delta P}{P}$ $\frac{\Delta \beta}{\beta}=\frac{1}{\gamma^{2}} \frac{\Delta P}{P}$ and the revolution frequency

The slippage factor is given by

$$
\frac{\Delta f}{f}=\left(\frac{1}{\gamma^{2}}-\alpha_{c}\right) \frac{\Delta P}{P}
$$

Frequency modulated but also $B$-field increased synchronouslv. to match energy and keep revolution radius constant.

- The number of stable synchronous particles is equal $t$ the harmonic number $h$. They are equally spaced along the circumference.
- Each synchronous particle has the nominal energy and follow the nominal trajectory
- Magnetic field increases with momentum and the per turn change of the momentum is

$$
(\Delta p)_{t u r n}=e \rho B^{\prime} T_{r}=\frac{2 \pi e \rho R B^{\prime}}{v}
$$

## Phase stability on electron synchrotrons



- For electron svnchrotrons, the relativistic $\gamma$ is very large and

$$
\eta=\frac{1}{\gamma^{2}}-\alpha_{c} \approx-\alpha_{c}<0^{\text {n compaction }}
$$

- Above transition, an increase in energy is followed by lower revolution frequency
- A delayed particle with respect to the synchronous one will get closer to it (gets a smaller energy increase) and phase stability occurs at the point $\mathrm{P} 2\left(\pi-\phi_{s}\right)$


## Energy and phase relation



- The RF frequency and phase are related to the revolution ones as follows

$$
f_{R F}=h f_{r} \Rightarrow \Delta \phi=-h \Delta \theta \quad \text { with } \quad \theta=\int \omega_{r} d t
$$

$$
\text { and } \Delta \omega_{r}=\frac{d}{d t}(\Delta \theta)=-\frac{1}{h} \frac{d}{d t}(\Delta \phi)=-\frac{1}{h} \frac{d \phi}{d t}
$$

From the definition of the momentum compaction and for electrons

$$
\eta=\frac{p_{s}}{\omega_{r s}}\left(\frac{d \omega_{r}}{d p}\right)_{s}=\frac{E_{s}}{\omega_{r s}}\left(\frac{d \omega_{r}}{d E}\right)_{s} \cong-\alpha_{c}
$$

- Replacing the revolution frequency change, the following relation is obtained between the energy and the RF phase time derivative

$$
\frac{\Delta E}{E_{s}}=\frac{1}{\omega_{r s} \alpha_{c} h} \frac{d \phi}{d t}=\frac{R}{c \alpha_{c} h} \dot{\phi}
$$

## ongitudinal equations of motion

- The energy gain per turn with respect to the energy gain of the synchronous particle is

$$
(\Delta E)_{t u r n}=e \hat{V}\left(\sin \phi-\sin \phi_{s}\right)
$$

- The rate of energy change can be approximated by

$$
\frac{d(\Delta E)}{d t} \cong(\Delta E)_{t u r n} f_{r s}=\frac{c}{2 \pi R} e \hat{V}\left(\sin \phi-\sin \phi_{s}\right)
$$

- The second energy phase relation is written as

$$
\frac{d}{d t}\left(\frac{\Delta E}{E_{s}}\right)=\frac{c e \hat{V}}{2 \pi R E_{s}}\left(\sin \phi-\sin \phi_{s}\right)
$$

## Small amplitude oscillations

- Expanding the harmonic functions in the vicinity of the synchronous phase

$$
\sin \phi-\sin \phi_{s}=\sin \left(\phi_{s}+\Delta \phi\right)-\sin \phi_{s} \cong \cos \phi_{s} \Delta \phi
$$

- Considering also that the coefficient of the phase derivative does not change with time, the differential equation reduces to one describing an harmonic oscillator
$\phi+\Omega_{s}^{2} \Delta \phi$ vith Arequency

$$
\Omega_{s}^{2}=-\frac{c^{2} e \alpha_{c} h V \cos \phi_{s}}{R^{2} 2 \pi E_{s}}
$$

For stability, the square of the frequency should positive and real, which gives the same relation for phase stability when particles are above transition

$$
\cos \phi_{s}<0 \Rightarrow \pi / 2<\phi_{s}<\pi
$$

## Longitudinal motion invariant

- For large amplitude oscillations the differential equation of the phase is written as

$$
\ddot{\phi}+\frac{\Omega_{s}^{2}}{\cos \phi_{s}}\left(\sin \phi-\sin \phi_{s}\right)=0
$$

- Multiplying by the time derivative of the phase and integrating, an invariant of motion is obtained

$$
\frac{\dot{\phi}^{2}}{2}-\frac{\Omega_{s}^{2}}{\cos \phi_{s}}\left(\cos \phi+\phi \sin \phi_{s}\right)=I
$$

reducing to the following expression, for small amplitude oscillations

$$
\frac{\phi^{2}}{2}+\frac{\Omega_{s}^{2}}{2} \Delta \phi=I
$$

Separatrix


- In the phase space (energy change versus phase), the motion is described by distorted circles in the vicinity of $\phi_{s}$ (stable fixed point)
- For phases beyond $\pi-\phi_{s}$ (unstable fixed point) the motion is unbounded in the phase variable, as for the rotations of a pendulum
- The curve passing through $\pi$ $\phi_{s}$ is called the separatrix and the enclosed area bucket

$$
\frac{\phi^{2}}{2}-\frac{\Omega_{s}^{2}}{\cos \phi_{s}}\left(\cos \phi+\phi \sin \phi_{s}\right)=-\frac{\Omega_{s}^{2}}{\cos \phi_{s}}\left(\cos \left(\pi-\phi_{s}\right)+\left(\pi-\phi_{s}\right) \sin \phi_{s}\right)
$$

## Energy acceptance

- The time derivative of the RF phase (or the energy change) reaches a maximum (the second derivative is zero) at the synchronous phase
- The equation of the separatrix at this point becomes

$$
\dot{\phi}_{\max }^{2}=2 \Omega_{s}^{2}\left(2+\left(2 \phi_{s}-\pi\right) \tan \phi_{s}\right)
$$

- Replacing the time derivative of the phase from the first energy phase relation

$$
\left(\frac{\Delta E}{E_{s}}\right)_{\max }=\mp \sqrt{\frac{q \hat{V}}{\pi h \alpha_{c} E_{s}}}\left(2 \cos \phi_{s}+\left(2 \phi_{s}-\pi\right) \sin \phi_{s}\right)
$$

This equation defines the energy acceptance which depends strongly on the choice of the synchronous phase. It plays an important role on injection matching and influences strongly the electron storage ring lifetime

## Stationary bucket

- When the synchronous phase is equal to 0 (below transition) or $\pi$ (above transition), there is no acceleration. The equation of the separatrix is written


$$
\frac{\phi^{2}}{2}=2 \Omega_{s}^{2} \sin ^{2} \frac{\phi}{2}
$$

- Using the (canonical) variable $W=2 \pi \frac{\Delta E}{\omega_{r s}}=2 \pi \frac{E_{s} R}{h \alpha_{c} \omega_{r s}} \dot{\phi}$ and replacing the expression for the synchrotron frequency
$W= \pm 2 \frac{C}{c} \sqrt{\frac{q \hat{V} E_{s}}{2 \pi h \alpha_{c}}}$. Fior $\frac{\phi}{\phi}=\pi$, the bucket height is
$W_{b k}=2 \frac{\stackrel{\text { and }}{C}}{c} \sqrt{\frac{\text { the area }}{\text { eVE }}} \begin{aligned} & 2 \pi h \alpha_{c}\end{aligned}$

$$
A_{b k}=2 \int_{0}^{2} W d \phi=8 W_{b k}
$$

## Adiabatic damping

- The longitudinal oscillations can be damped directly by acceleration itself. Consider the equation of motion when the energy of the synchronous particle is not constant

$$
\frac{d}{d t}\left(E_{s} \dot{\phi}\right)=-\Omega_{s}^{2} E_{s} \Delta \phi
$$

- From this equation, we obtain a 2 nd order differential equation with a damping term

$$
\ddot{\phi}+\frac{\dot{E}_{s}}{E_{s}} \dot{\phi}+\Omega_{s}^{2} \Delta \phi=0
$$

- From the definition of the synchrotron frequency the damping coefficient is

$$
\frac{\dot{E}_{s}}{E_{s}}=-2 \frac{\dot{\Omega}_{s}}{\Omega_{s}}
$$

## Outline - Phase space concepts

■ Transverse phase space and Beam representation

- Beam emittance

■ Liouville and normalised emittance

- Beam matrix
- RMS emittance
- Betatron functions revisited

■ Gaussian distribution

## Transverse Phase Space

- Under linear forces, any particle moves on ellipse in phase space ( $x, x^{\prime}$ ), ( $\mathrm{y}, \mathrm{y}^{\prime}$ ).
- Ellipse rotates and moves between magnets, but its area is preserved.
- The area of the ellipse defines the emittance

- The equation of the ellipse is

$$
\gamma u^{2}+2 \alpha u u^{\prime}+\beta u^{\prime 2}=\epsilon
$$

with $\alpha, \beta, \gamma$, the twiss parameters

- Due to large number of particles, need of a statistical description of the beam, and its size


## Beam representation

- Beam is a set of millions/billions of particles (N)
- A macro-particle representation models beam as a set of n particles with $\mathrm{n} \ll \mathrm{N}$
- Distribution function is a statistical function representing the number of particles in phase space 10 between $\mathbf{u}+d \mathbf{u}, \quad \mathbf{u}^{\prime}+d \mathbf{u}^{\prime}$ $f\left(\mathbf{u}, \mathbf{u}^{\prime}\right) d \mathbf{u} d \mathbf{u}^{\prime}=$ number of particles





## Liouville emittance

- Emittance represents the phase-space volume occupied by the beam
- The phase space can have different dimensions
$\square$ 2D ( $\mathbf{x}, \mathbf{x}^{\prime}$ ) or ( $\mathbf{y}, \mathbf{y}^{\prime}$ ) or ( $\boldsymbol{\varphi}, \mathbf{E}$ )
$\square$ 4D ( $\mathbf{x}, \mathbf{x}^{\prime}, \mathbf{y}, \mathbf{y}^{\prime}$ ) or ( $\mathbf{x}, \mathbf{x}^{\prime}, \boldsymbol{\varphi}, \mathrm{E}$ ) or ( $\mathbf{y}, \mathbf{y}^{\prime}, \boldsymbol{\varphi}, \mathbf{E}$ )
$\square$ 6D ( $\mathbf{x}, \mathbf{x}^{\prime}, \mathbf{y}, \mathbf{y}^{\prime}, \boldsymbol{\varphi}, \mathrm{E}$ )
- The resolution of my beam observation is very large compared to the average distance between particles.
- The beam modeled by phase space distribution function $f\left(x, x^{\prime}, y, y^{\prime}, \phi, E\right)$
- The volume of this function on phase space is the beam Liouville emittance


## Vlasov and Boltzmann equations

- The evolution of the distribution function is described by Vlasov equation

$$
\frac{d f}{d t}=\frac{\partial f}{\partial t}+\frac{\mathbf{p}}{\gamma m_{0}} \frac{\partial f}{\partial \mathbf{q}}+\mathbf{F}(\mathbf{q}) \frac{\partial f}{\partial \mathbf{p}}=0
$$

- Mathematical representation of Liouville theorem stating the conservation of phase space volume ( $\mathbf{q}, \mathbf{p}$ )
- In the presence of fluctuations (radiation, collisions, etc.) distribution function evolution described by Boltzmann equation

$$
\frac{d f}{d t}=\frac{\partial f}{\partial t}+\frac{\mathbf{p}}{\gamma m_{0}} \frac{\partial f}{\partial \mathbf{q}}+\mathbf{F}(\mathbf{q}) \frac{\partial f}{\partial \mathbf{p}}=\left.\frac{d f}{d t}\right|_{\text {fluct }}
$$

- The distribution evolves towards a Maxwell-Boltzmann statistical equilibrium


## 2D and normalized emittance

- When motion is uncoupled, Vlasov equation still holds for each plane individually

$$
\frac{d f}{d t}=\frac{\partial f}{\partial t}+\frac{p_{u}}{\gamma m_{0}} \frac{\partial f}{\partial u}+\mathbf{F}(u) \frac{\partial f}{\partial p}=0
$$

- The Liouville emittance in the $2 \mathrm{D}\left(u, p_{u}\right)$ phase space is still conserved
- In the case of acceleration, the emittance is conserved in the ( $u, p_{u}$ ) but not in the $\left(u, u^{\prime}\right)$ diabatic damping)
- Considering that

$$
u^{\prime}=\frac{d u}{d s}=\frac{p_{u}}{p_{s}}
$$

the beam is conserved in the phase space $\left(u, u^{\prime} p_{s}\right)$

- Define a normalised emittance which is conserved during acceleration

$$
\epsilon_{n}=\beta_{r} \gamma_{r} \epsilon
$$

## Beam matrix

- We would like to determine the transformation of the beam enclosed by an ellipse through the accelerator
- Consider a vector $\mathbf{u}=\left(\mathbf{x}, \mathbf{x}^{\prime}, \mathbf{y}, \mathbf{y}^{\prime}, \ldots\right)$ in a generalized n-dimensional phase space. In that case the ellipse transformation is

$$
\mathbf{u}^{T} \cdot \mathbf{\Sigma}^{-1} \cdot \mathbf{u}=\mathcal{I}
$$

- Application to one dimension gives $\Sigma_{11} u^{2}+2 \Sigma_{22} u u^{\prime}+\Sigma_{22} u^{2}=1$ and comparing with $\gamma_{u} u^{2}+2 \alpha_{u} u u^{\prime}+\beta_{u} u^{\prime 2}=\epsilon_{u}$ provides the beam matrix $\quad \Sigma_{u}=\left(\begin{array}{cc}\beta_{u} & -\alpha_{u} \\ -\alpha_{u} & \gamma_{u}\end{array}\right) \epsilon_{u}=\mathcal{B} \epsilon_{u}$ which can be expanded to more dimensions
Evolution of the n-dimensional phase space from position 1 to position 2, through transport matrix $\mathcal{M}$

$$
\mathcal{M} \cdot \boldsymbol{\Sigma}_{1} \cdot \mathcal{M}^{T}=\boldsymbol{\Sigma}_{2}
$$

- The average of a function on the beam distribution defined

$$
\left\langle g\left(\mathbf{u}, \mathbf{u}^{\prime}\right)\right\rangle=\frac{1}{n} \sum_{i=1}^{n} g\left(u_{i}, u_{i}^{\prime}\right)=\frac{1}{N} \iint f\left(\mathbf{u}, \mathbf{u}^{\prime}\right) g\left(\mathbf{u}, \mathbf{u}^{\prime}\right) d \mathbf{u} d \mathbf{u}^{\prime}
$$

- Taking the square root, the following Root Mean Square (RMS) quantities are defined
- RMS beam size

$$
u_{\mathrm{rms}}=\sqrt{\sigma_{u}}=\sqrt{\left\langle(u-\langle u\rangle)^{2}\right\rangle}
$$

$\square$ RMS beam divergence

$$
u_{\mathrm{rms}}^{\prime}=\sqrt{\sigma_{u}^{\prime}}=\sqrt{\left\langle\left(u^{\prime}-\left\langle u^{\prime}\right\rangle\right)^{2}\right\rangle}
$$

$\square$ RMS coupling

$$
\left(u u^{\prime}\right)_{\mathrm{rms}}=\sqrt{\sigma_{u u^{\prime}}}=\sqrt{\left\langle(u-\langle u\rangle)\left(u^{\prime}-\left\langle u^{\prime}\right\rangle\right)\right\rangle}
$$

- Beam modelled as macro-particles
- Involved in processed linked to the statistical size
- The rms emittance is defined as

$$
\epsilon_{\mathrm{rms}}=\sqrt{\langle u\rangle^{2}\left\langle u^{\prime}\right\rangle^{2}-\left\langle u u^{\prime}\right\rangle^{2}}
$$

- It is a statistical quantity giving intormation about the minimum beam size
- For linear forces the rms emittance is conserved in the case of linear forces
- The determinant of the rms beam matrix $\operatorname{det}\left(\Sigma_{\mathrm{rms}}\right)=\epsilon_{\mathrm{rms}}$
- Including acceleration, the determinant of 6 D transport matrices is not equal to 1 but

$$
\operatorname{det}\left(\mathcal{M}_{1 \rightarrow 2}\right)=\sqrt{\frac{\beta_{r 2} \gamma_{r 2}}{\beta_{r 1} \gamma_{r 1}}}
$$

## Beam betatron functions

- The best ellipse fitting the beam distribution is

$$
\gamma_{u} u^{2}+2 \alpha_{u} u u^{\prime}+\beta_{u} u^{\prime 2}=\epsilon_{u}
$$

- The beam betatron functions can be defined through the rms emittance

$$
\begin{aligned}
\beta_{u} & =\frac{u_{\mathrm{rms}}^{2}}{\epsilon_{\mathrm{rms}}}=\frac{\sigma_{u}}{\epsilon_{\mathrm{rms}}} \\
& =\frac{u_{\mathrm{rms}}^{\prime 2}}{\epsilon_{\mathrm{rms}}}=\frac{\sigma_{u}^{\prime}}{\epsilon_{\mathrm{rms}}} \\
& =\frac{\left(u u^{\prime}\right)_{\mathrm{rms}}}{\epsilon_{\mathrm{rms}}}=\frac{\sigma_{u u^{\prime}}}{\epsilon_{\mathrm{rms}}}
\end{aligned}
$$



## Gaussian distribution

- The Gaussian distribution has a gaussian density profile in phase space
$f\left(x, x^{\prime}, y, y^{\prime}\right)=\frac{N}{A} \exp \left(-\frac{\gamma_{x} x^{2}+2 \alpha_{x} x x^{\prime}+\beta_{x} x^{\prime 2}}{2 \epsilon_{x, \mathrm{rms}}}+\frac{\gamma_{y} y^{2}+2 \alpha_{y} y y^{\prime}+\beta_{y} y^{\prime 2}}{2 \epsilon_{y, \mathrm{rms}}}\right)$
for which $\int f\left(\mathbf{u}, \mathbf{u}^{\prime}\right) d \mathbf{u} d \mathbf{u}^{\prime}=N$
The beam boundary is $\gamma_{u} u^{2}+2 \alpha_{u} u u^{\prime}+\beta_{u} u^{\prime 2}=n^{2} \epsilon_{u, \mathrm{rms}}$

Uniform (KV)


Gaussian


## Outline

- Radiation damping
- Synchrotron oscillations
- Betatron oscillations
$\square$ Robinson theorem
- Radiation integrals
- Quantum excitation
- Equilibrium emittances
- Up to this point, the transport of a relativistic particle around a ring was treated as a conservative process
- The particle change of momentum (acceleration) results in emission of synchrotron radiation
- It turns out that this is much more important in circular then linear accelerators
- The emission of synchrotron radiation results in energy lost by the particle and the damping of oscillations, called radiation damping
- This energy lost is recovered by the RF accelerating cavities in the longitudinal direction but not in the transverse

$$
\begin{aligned}
& \mathbf{p}=m_{0} \mathbf{V} \\
& v \ll c \\
& P_{s}=\frac{e^{2}}{6 \pi \varepsilon_{0} m_{0}^{2} c^{3}}\left(\frac{d \mathbf{p}}{d t}\right)^{2} \\
& \text { Larmor Power radiated by non- } \\
& \text { relativistic particles is very small } \\
& \mathbf{p}=\gamma m_{0} \mathbf{v} \\
& v \approx c
\end{aligned}
$$

Power radiated by relativistic
particles in linear accelerators is
negligible
Power radiated by relativistic
particles in circular accelerators
is very strong (Liénard, 1898)

## Lienard's Paper

## -"Electric and Magnetic Field produced by an electric charge concentrated at a point and travelling on an arbitrary path"

## L'Éclairage Électrique

 REVUE HEBDOMADAIRE D'ELECTRICITĖ
 D. Mossirn Rolasti


## CHAMP FLECTRIQUE ET MAGNETIQUE

 D'US KOUTEMEXT QUELCOSers

Admettons ধqu'use masse electrigue en mouvement de densite ? et de viteuse $w$ en chaque poior produit le mbme champ ga'un courant de conduction d'intensite ace. En conservant les notations d'un prócédeat article (') nous obeichdrons pour déterminer le champ, les Equations

$$
\begin{aligned}
& \frac{1}{4=}\left(\frac{d y}{d y}-\frac{d 3}{d y}\right)=3+x+\frac{d y}{d x} \\
& v=\left(\frac{d y}{d y}-\frac{d \pi}{d y}\right)=-\frac{3}{4=} \frac{d x}{d x}
\end{aligned}
$$

*avec les analogues diduites par permuiation tournante ef en outre las gairantes

$$
\begin{aligned}
& s=\left(\frac{d f}{d x}+\frac{d g}{\sqrt{j}}+\frac{d v}{d x}\right. \\
& \frac{d u}{d x}+\frac{d y}{d y}+\frac{d y}{d i}=a
\end{aligned}
$$

De oe syatime d'ójustions on 4eduir facilement les relations

$$
\left.\left(\operatorname{ses}-\frac{4^{2}}{d^{2}}\right) \mathrm{r}=\mathrm{v}^{2} \frac{x^{2}}{d x}+\frac{4}{d x} \operatorname{lox} \right\rvert\,
$$

$$
\left(V: d-\frac{d}{d r}\right) x=4=V^{2}\left[\frac{d}{d i}\left[g u_{g}\right)-\frac{d}{d r}\left(v_{;}\right] \quad \mathrm{b}\right.
$$

Soient maintenant quatre fonctions $\psi, \mathbf{F}_{\text {, }}$ G, H deficies par les conditions

|  |
| :---: |
|  |  |

On satificta aus conditions is\} er $(6) \mathrm{cn}$ prenant

$$
\begin{gathered}
d \Gamma m-\frac{d y}{d T}-\frac{1}{d T} \frac{d F}{d t} \\
*=\frac{d T}{d T}-\frac{d G}{d i}
\end{gathered}
$$

(6)

Quant aox equations ( 1 ) o $\{4$ ), Rour qu'elles soient satiofaiter, il faudra yee, un ples de (3i) et (f), on air la consition

$$
\frac{d 5}{d i}+\frac{d F}{d x}+\frac{d G}{d /}+\frac{d E F}{d i}=a
$$

Occupoes-nous d'ybond de l'équaxion ( $j$ ). On sait qุpe la solution la plus générale est la suivantic :
$\psi=\int \frac{r\left[x^{\prime} \cdot y^{\prime}+r^{\prime}, t-\frac{r}{V}\right]}{r} d r$

## Why electrons?

Power inversely proportional to $4^{\text {th }}$ power of rest mass (proton 2000 times heavier than electron) On the other hand, for multi TeV hadron colliders (LHC, FCCpp) synchrotron radiation is an important issue (protection with beam screens)
By integrating around one revolution, the energy loss per turn is obtained.

$$
\Delta E=\frac{e^{2}}{3 \varepsilon_{0}\left(m_{0} c^{2}\right)^{4}} \frac{E^{4}}{\rho}
$$ For the ILC DR, it is around 4.5 MeV/turn. On the other hand, for LEPII ( $\mathbf{1 2 0} \mathbf{G e V}$ ) it was $\mathbf{6} \mathbf{G e V} /$ turn, or for FCCee (ttbar flavor at 175 GeV ), it will be $7.5 \mathrm{GeV} /$ turn i.e. circular electron/positron machines of hundreds of GeV become quite demanding with respect to RF power (and extremely long)

- The power radiated by a relativistic electron can be rewritten as

$$
P_{\gamma}=\frac{c C_{\gamma} E^{4}}{2 \pi \rho^{2}}=\frac{e^{2} c^{3}}{2 \pi}{ }_{2}{ }^{2} B_{\gamma}^{2}
$$

$$
C_{\gamma}=8.85 \times 10^{-5} \frac{\mathrm{~m}}{(\mathrm{GeV})^{3}}
$$

- The energy loss per turn can be expressed as
$U_{0}=\frac{C_{\gamma} E^{4}}{2 \pi} \oint_{\text {Nit }}{ }^{2} \frac{d s}{2}$

$$
\mathcal{I}_{2}=\oint_{h{ }^{\prime}} \frac{d s}{\rho^{2}{ }^{\text {nd }}} \text { radiation integral }
$$

- For a lattice with uniform bending radius (iso-magnetic) this yields

$$
U_{0}[k e V]=88.5 \frac{E^{4}}{\rho} \frac{[\mathrm{GeV}]^{4}}{[\mathrm{~m}]}
$$

- If this energy were not recovered, particles would gradually spiral inward until lost on vacuum chamber wall
- RF cavities replace this lost energy by providing momentum kicks to the beam in the longitudinal direction


## Damping of synchrotron oscillations

- Consider the differential equation of the energy for longitudinal mọtion

$$
\begin{aligned}
& \Delta \dot{E}+\alpha_{s} \Delta \dot{E}+\Omega^{2} \Delta E=0 \\
& \text { ping coefficient } \quad \alpha_{s}=\frac{1}{2 T_{0}} \frac{d U}{d E}
\end{aligned}
$$

where $U$ is the energy requirement per turn of the particle, and $T_{0}$ the revolution period and the synchrotron frequency

$$
\Omega^{2}=\frac{e \alpha_{c} \omega_{R F} V_{0} \cos \phi_{s}}{E T_{0}}
$$

The solution can be written as a damped oscillation in energy and time with respect to the ideal synchromous particle

$$
\Delta E(t)=A_{E} e^{\alpha_{s} t} \cos \left(\Omega t-\phi_{s}\right)
$$

$$
\tau(t)=-\frac{\alpha_{c} A_{E}}{E_{0} \Omega} e^{-\alpha_{s} t} \sin \left(\Omega t-\phi_{s}\right)
$$

Note that the synchrotron motion is damped towards the motion of the synchronous particle

- The damping coefficient is dependent on the energy of the particle through the radiated power but also through the revolution period. In the following, we try to establish this relationship
- A particle with energy spread follows a dispersive trajectory with dispersion $D$

■ The energy req ${ }^{d s^{\prime}}=\left(1+\frac{\Delta x}{\rho}\right) d s=\left(1+\frac{D}{\rho} \frac{\Delta E}{E}\right) d s_{\mathrm{d}}$ by the integral of the radiated power in one revolution

■iffereI $^{U}=\oint P_{s} d t=\oint P_{s} d s^{\prime} / c=\frac{1}{c} \oint P_{s}\left(1+\frac{D}{\rho} \frac{\Delta E}{E}\right) d s$

$$
\frac{d U}{d E}=\frac{1}{c} \oint\left[\frac{d P_{s}}{d E}+\frac{D}{\rho}\left(\frac{d P_{s}}{d E} \frac{\Delta E}{E}+\frac{P_{s}}{E}\right)\right] d s
$$

- Taking into account that the average energy spread around the ring should be zero the previous integral is written:

$$
\frac{d U}{d E}=\frac{1}{c} \oint\left(\frac{d P_{s}}{d E}+\frac{D}{\rho} \frac{P_{s}}{E}\right)^{s} d s
$$

■ Setting $\mathcal{C}=\frac{e^{4} c^{3}}{6 \pi \varepsilon_{0}\left(m_{0} c^{2}\right)^{4}} 1$ king into account the definition of the magnetic rigidity, the expression of the radiation power is written $P_{s}=\mathcal{C} E^{2} B^{2}$

- Its derivative with respect to the energy gives

$$
\frac{d P_{s}}{d E}=2 \frac{P_{s}}{E}(1+D k \rho)
$$

where we used the identity $\frac{d B}{d E}=\frac{d B}{d x} \frac{d x}{d E}=\frac{d B}{d x} \frac{D}{E}=B k \rho \frac{D}{E}$
Replacing in the integral at tne top, - Replacing in the integral at tne top,

$$
\frac{d U}{d E}=\frac{2 U_{0}}{E}+\frac{1}{c E} \oint D P_{s}\left(2 k \rho+\frac{1}{\rho}\right) d s
$$

## amping of synchrotron oscillations

Replacing in the last integral the expression of the power

$$
\oint D P_{s}\left(2 k \rho+\frac{1}{\rho}\right) d s=\frac{\mathcal{C} E^{4}}{e^{2} c^{2}} \oint \frac{D}{\rho}\left(2 k+\frac{1}{\rho^{2}}\right) d s
$$

and taking into account that $U_{0}=\frac{1}{c} \oint P_{s} d s=\frac{\mathcal{C} E^{4}}{e^{2} c^{3}} \oint \frac{d s}{\rho^{2}}$ the damping of synchrotron motion is written

$$
\alpha_{s}=\frac{1}{2 T_{0}} \frac{d U}{d E}=\frac{U_{0}}{2 E T_{0}}(2+\mathcal{D})=\frac{U_{0}}{2 E T_{0}} \mathcal{J}_{s}
$$ with the damping partition number defined as

$$
\mathcal{D}=\frac{\oint \frac{D}{\rho}\left(2 k+\frac{1}{\rho^{2}}\right) d s}{\oint \frac{d s}{\rho^{2}}}=\frac{\mathcal{I}_{4}}{\mathcal{I}_{2}}
$$

- This is a paramemers enulery uemed by the lattice!
- Bending magnets and quads are usually separated and the damping partition number is usually extremely small
- Synchrotron radiation emitted in the direction of motion of electron, whose momentum is reduced
- This reduces the vertical component of the momentum but the angle remains the same

$$
y^{\prime}=\frac{\delta p_{\perp}}{|\mathbf{p}|}
$$



- The key for betatron damping is the energy recovery by the RF cavities, as only the longitudinal momentum is restored

- The change in energy will not affect the vertical position but the angle changes proportionally $\delta y^{\prime}=y^{\prime} \frac{\delta E}{E}$ Recall now solution of Hill's equations in the vertical plane, assuming that the beta function is slowly varying (i.e. alpha function is zero), for simplicity
$y=A \cos \phi$ and $y^{\prime}=-\frac{A}{\beta(s)} \sin \phi$
■ The betatron oscillation amplitude is $A^{2}=y^{2}+\left[\beta(s) y^{\prime}\right]^{2}$
- The change of the amplitude becomes

$$
\delta\left(A^{2}\right)=\beta(s) \delta\left(y^{\prime 2}\right) \Rightarrow A \delta A=-\beta^{2}(s) y^{\prime 2} \frac{\delta E}{E}
$$

■ By averaging over all angles $\left\langle\beta^{2}(s) y^{\prime 2}\right\rangle=\frac{A^{2}}{2 \pi} \int_{0}^{2 \pi} \sin ^{2} \phi d \phi=\frac{A^{2}}{2}$ and $A\langle\delta A\rangle=-\frac{A^{2}}{2} \frac{\delta E}{E}$

## amping of vertical oscillations

 decaying $\quad A(t)=A(0) e^{-\alpha_{y} t}$- Equivalently, the damping of the vertical emittance is given
by

$$
\epsilon_{y}=\epsilon_{y}(0) e^{-2 \alpha_{y} t}
$$

- This means that the vertical emittance in the absence of dispersion or coupling will be reduced to zero
- Actually, due to the fact that the radiation emission is not parallel to the motion (but in an angular distribution with a width of $\sim 1 / \gamma$ ), there is a "recoil" preventing vertical oscillations to be reduced to zero
- This gives a "quantum limit", beyond which the vertical emittance cannot be further reduced


## Damping of horizontal oscillations

The horizontal motion is described by
$x=x_{\beta}+x_{e}=A \cos \phi+D \frac{\Delta E}{E}$ and $x^{\prime}=x_{\beta}^{\prime}+x_{e}^{\prime}=-\frac{A}{\beta(s)} \sin \phi+D^{\prime} \frac{\Delta E}{E}$
■ Energy change Udue to photon emission results in a change of the dispersive part but not of the total coordinates so that

$$
\delta x_{\beta}=-\delta x_{e}=D \frac{u}{E} \text { and } x \delta x_{\beta}^{\prime}=-\delta x_{e}^{\prime}=D^{\prime} \frac{u}{E}
$$

■ The change of the Betatron amplitude $A^{2}=x_{\beta}^{2}+\left[\beta(s) x_{\beta}^{\prime}\right]^{2}$ becomes $A \delta A=-\left(D x_{\beta}+\beta^{2}(s) D^{\prime} x_{\beta}^{\prime}\right) \frac{u}{E}$

- The energy loss in an element $d l$ is written

$$
u=-\frac{P_{s}\left(x_{\beta}\right)}{c} d l=-\frac{1}{c}\left(P_{s}+2 \frac{P_{s}}{B} \frac{d B}{d x} x_{\beta}\right)\left(1+\frac{x_{\beta}}{\rho}\right) d s
$$

- Substituting to the change in amplitude and averaging over the angles (and some patience...)
$\frac{\Delta A}{A}=-(1-\mathcal{D}) \frac{U_{0}}{2 E}$ the damping coefficient $\quad \alpha_{x}=\frac{U_{0}}{2 E T_{0}}(1-\mathcal{D})$


## Robinson theorem

Grouping the damping constants and introducing the three damping times and damping partition numbers

$$
\begin{aligned}
& \alpha_{s}=\frac{1}{\tau_{s}}=\frac{U_{0}}{2 E T_{0}}(2+\mathcal{D})=\frac{U_{0}}{2 E T_{0}} \mathcal{J}_{s} \\
& \alpha_{y}=\frac{1}{\tau_{y}}=\frac{U_{0}}{2 E T_{0}}=\frac{U_{0}}{2 E T_{0}} \mathcal{J}_{y} \\
& \alpha_{x}=\frac{1}{\tau_{x}}=\frac{U_{0}}{2 E T_{0}}(1-\mathcal{D})=\frac{U_{0}}{2 E T_{0}} \mathcal{J}_{x}
\end{aligned}
$$

The Robinson theorem (1958) states that the sum of the damping partition number is an invariant

$$
\mathcal{J}_{x}+\mathcal{J}_{y}+\mathcal{J}_{s}=4
$$

In storage ring with separated function magnets, $\quad \mathcal{D} \ll 1$

$$
\mathcal{J}_{x}=1, \quad \mathcal{J}_{y}=1, \quad \mathcal{J}_{s}=2
$$

■ The longitudinal damping occurs at twice the rate of the damping in the two transverse dimensions

- Radiation damping provides a direct mechanism to take "hot" injected beams and reduce the equilibrium parameters to a regime useful for high luminosity colliders and high brightness light sources.
- At the same time, the radiated power plays a dominant role in the design of the associated hardware and its protection
- If the only effect was radiation damping, the transverse emittances would be damped to zero.
- Photons are emitted in energy bursts in localized areas and horizontal betatron oscillations are excited as well (quantum fluctuations)
■ Vertical emittance can become very small and only excited by coupling with the horizontal or residual vertical dispersion
- Electrons are influenced by this stochastic effect and eventually loose memory (unlike hadrons)


## Equilibrium Beam Properties

- The emission of photons by the beam is a random process around the ring
- Photons are emitted within a cone around the direction of the beam particle with a characteristic angle $1 / \gamma$
- This quantized process excites oscillations in each dimension
 serve to heat the beam, the balance between quantum excitation and radiation damping results in the equilibrium beam properties that are characteristics of a given ring lattice
- For the very short timescales corresponding to photon emission, we can take the equations of motion we previously obtained for synchrotron motion and write:

$$
\Delta E^{2}(t)+\frac{E^{2} \Omega^{2}}{\alpha_{c}^{2}} \tau^{2}(t)=A_{E}^{2}
$$

where $A_{E}$ is a constant of the motion.

- The change in $A_{E}$ due to the emission of photons should be estimated
- The emission of an individual photon will not affect the time variable, however, it will cause an instantaneous change in the value of $\Delta E$


## Quantum Excitation - Longitudinal

- From the solution of the synchrotron equation of motion, the energy difference is

$$
\delta(\Delta \mathrm{E})=A_{0} \cos \Omega\left(t-t_{0}\right)-\frac{u}{E} \cos \Omega\left(t-t_{1}\right)=A \cos \Omega\left(t-t_{1}\right)
$$

where $u$ is the energy radiated at time $t_{1}$. Thus, for $t=t_{1}$

$$
A^{2}=A_{0}^{2}+\left(\frac{u}{E} \dot{)^{2}} \dot{\dot{J}}-\frac{2 A_{0} u}{E} \cos \Omega\left(t-t_{0}\right)\right.
$$

$$
\text { and } \quad \Delta A^{2}=\left\langle A^{2}-A_{0}^{2}\right\rangle=\frac{U^{2}}{E^{2}}
$$

- Considering the rate of photon emission N , the average change in synchrotron amplitude due to photon emission is

$$
\frac{d\left\langle A^{2}\right\rangle}{d t}=\mathrm{N} \frac{2}{2}
$$

## Quantum Excitation - Longitudinal

- By including, the radiation damping term, the net change in the synchrotron amplitude can be written as:

$$
\frac{d\left\langle A^{2}\right\rangle^{2}}{d t}=-2 \alpha_{E}\left\langle A^{2}\right\rangle+N \frac{U^{2}}{E^{2}}
$$

- The equilibrium properties of a bunch are obtained when the rate of growth from quantum excitation and the rate of damping from radiation damping are equal
- For an ensemble of particles where the rms energy amplitude is represented by the rms energy spread, the



## Photon Emission

The term $\left\langle\mathrm{N}\left\langle u^{2}\right\rangle\right\rangle_{\mathrm{s}}$ the ring-wide average of the photon emission rate, N , times the mean square energy loss associated with each emission

$$
\mathrm{N}=\boldsymbol{\gamma}(u) d u \quad \text { and } \quad \mathrm{N}\left\langle u^{2}\right\rangle=\boldsymbol{\%}^{2} n(u) d u
$$

where $n(u)$ is the photon emission rate at energy $u$,

$$
\left\langle N\left\langle u^{2}\right\rangle\right\rangle_{s}=\frac{1}{C} 币 N\left\langle u^{2}\right\rangle d s
$$

with $C$ is the ring circumference.

- The derivation of the photon spectrum emitted in a magnetic field is quite lengthy and we just quote the result

$$
N\left\langle u^{2}\right\rangle=2 C_{q} \gamma^{2} \frac{E P_{\gamma}}{\rho} \quad \text { where } \quad C_{q}=\frac{55}{32 \sqrt{3}} \frac{\square}{m c}=3.84 \times 10^{-13} \mathrm{~m}
$$

- Integrating around the ring then yields the RMS beam energy spread

$$
\sigma_{\delta}^{2}=\left(\frac{\sigma_{E}}{E}\right)^{2}+C^{2}=C_{q} r^{2} \frac{I_{3}}{J_{s} I_{2}}=C_{q} r^{2} \frac{I_{3}}{2 I_{2}+I_{4}} \quad \text { where } \quad I_{3}=\emptyset \frac{d s}{\rho \rho}
$$

- Using this expression with the synchrotron equations of motion, the bunch length is related to the energy spread by

$$
\sigma_{z}=\sigma_{\delta} \sqrt{\frac{\alpha_{\text {wfth }}^{2} \text { thh h }{ }^{2} \text { Carmonic number }_{2}^{2 \pi h e V_{0}\left|\cos \phi_{s}\right|}}{} \quad h=\frac{f_{\mathrm{RF}} C}{}}
$$

- The bunch length scales inversely with the square root of the RF voltage.

- Assume electron along nominal momentum orbit with initially negligible emittance
- After photon emission with momentum $\Delta p$, electron's momentum becomes $p_{0}-\Delta p$ and the trajectory becomes

$$
\delta x=D \frac{\Delta_{p}}{p} \text { and } \quad \delta x^{\prime}=D^{\prime} \frac{\Delta_{p}}{p}
$$

## Dispersion emittance

-Recall that the emittance of the betatron ellipse in phase space is

$$
\varepsilon_{x}=\gamma(s) x^{2}(s)+2 \alpha(s) x(s) x(s)+\beta(s) x^{2}(s)
$$

-Taking into account the change of the position and angle due to the photon emission, the change of the emittance is

$$
\delta \varepsilon_{x}=\left(\gamma D^{2}+2 \alpha D D^{\prime}+\beta D^{2}\right)\left(\frac{\delta p}{p} \stackrel{\dot{\circ}}{\dot{)}}=H(s)\left(\frac{\delta p}{p} \frac{{ }^{2}}{\dot{)}}\right.\right.
$$

with the "dispersion" emittance (or curly H-function)

$$
\mathcal{H}(s)=\beta(s) D(s)^{\prime 2}+2 \alpha(s) D(s) D^{\prime}(s)+\gamma(s) D(s)^{2}
$$

## Horizontal equilibrium emittance

Averaging over all photon energies and emission probabilities, the equilibrium emittance is derived as
$\epsilon_{x}=\frac{C_{q} \gamma^{2}}{\mathcal{J}_{x}} \frac{\oint \frac{\mathcal{H}_{x}(s)}{\left|\rho_{x}\right|^{3}} d s}{\oint \frac{1}{\rho_{x}^{2}} d s}$ with $\frac{C_{q} \gamma^{2}}{\mathcal{J}_{x}} \frac{\mathcal{I}_{5}}{\mathcal{I}_{2}}$

- For isomagnetic ring with separated runction magnets the equilibrium emittance is written

$$
\epsilon_{x}=1.47 \times 10^{-6} \frac{E^{2}}{\rho} \frac{1}{l_{\text {bend }}} \int_{0}^{l_{\text {bend }}} \mathcal{H}_{x}(s) d s
$$

- The integral depends on the optics functions on the bends
- It gets small for small horizontal beta and dispersion, but this necessitates strong quadrupoles
- Smaller bending angle and lower energy reduce equilibrium emittance


## Quantum Excitation - Vertical

- In the vertical dimension, assuming an ideal ring with no vertical dispersion, the quantum excitation of the emittance is determined by the opening angle of the emitted photons. The resulting perturbation to the vertical motion can be described as:
and the effect to the emittance is

$$
\delta y=0
$$

- For typical storage ring parameters, the vertical emittance due to quantum excitation is very small
- Assuming a typical $\beta_{y}$ values of a few 10 's of meters and bending radius of $\sim 100 \mathrm{~m}$, the quantum limit is $\varepsilon_{y} \sim 0.1 \mathrm{pm}$.
-The observed sources of vertical emittance are:
${ }^{\circ}$ emittance coupling whose source is ring errors which couple the vertical and horizontal betatron motion
- vertical dispersion due to vertical misalignment of the quadrupoles and sextupoles and angular errors in the dipoles
- The vertical and horizontal emittances in the presence of a collection of such ercrors around a storage ring is commonly described as: $\quad \varepsilon_{y}=\frac{}{1+\kappa} \varepsilon_{0} ; \quad \varepsilon_{x}=\frac{}{1+\kappa} \varepsilon_{0}$ for $0<\kappa<1$
$\varepsilon_{0}$ is the horizontal equilibrium (natural) emittance.


## Radiation integrals

$$
\begin{array}{lll}
\mathcal{I}_{1}=\oint \frac{D}{\rho} d s & \text { Momentum compaction factor } & \alpha_{c}=\frac{\mathcal{I}_{1}}{2 \pi R} \\
\mathcal{I}_{2}=\oint \frac{1}{\rho^{2}} d s & \text { Energy loss per turn } & U_{0}=\frac{C_{\gamma}}{2 \pi} E^{4} \mathcal{I}_{2}
\end{array}
$$

$$
\begin{array}{ll}
\mathcal{I}_{3}=\oint \frac{1}{|\rho|^{3}} d s & \begin{array}{l}
\text { Equilibrium } \\
\text { energy spread }
\end{array}
\end{array} \sigma_{\delta}^{2}=C_{q} \gamma^{2} \frac{\mathcal{I}_{3}}{2 \mathcal{I}_{2}+\mathcal{I}_{4}}
$$

$\mathcal{I}_{5}=\oint \frac{\mathcal{H}}{\left|\rho^{3}\right|} d s \quad$ Equilibrium betatron emittance

$$
\epsilon_{x}=C_{q} \gamma^{2} \frac{\mathcal{I}_{5}}{\mathcal{I}_{2}-\mathcal{I}_{4}}
$$

