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B RF acceleration

BEnergy gain and phase stability
BMomentum compaction and transition

BEquations of motion
dSmall amplitudes
dLongitudinal invariant

BSeparatrix
BEnergy acceptance
BStationary bucket

B Adiabatic damping




* The use of RF fields allows an arbitrary number of accelerating
steps in gaps and electrodes fed by RF generator

* The electric field is not longer continuous but sinusoidal
alternating half periods of acceleration and deceleration

* The synchronism condition for RF period T, and particle
velocity v
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Assuming a sinusoidal electric field E, = E, ¢Ot@rht+ 9,)
synchronous particle passes at the middle of the gap g, at time t =

0, the energy is
9/2

Z
Mr,0=q) Ed=q | £ cos(og = +9)

-g/2
g/2

And the energy gain is AW = gE, f o ( E)dz
v

-q/2

g/
EO0,29az

-9/2

; andfinally AW= QV%@L{h%th:eq\;éﬁsit time

/2

5 factor defined as T = sin(®g/2v) .

g ©g/2V rE(O,Z)cos wl(2 &z
§ It can be shown that in general T = -9/
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Assume that a synchronicity condition is fulfilled at the phase ¢,
and that energy increase produces a velocity increase

Around point P, that arrives earlier (N,) experiences a smaller
accelerating field and slows down

Particles arriving later (M1) will be accelerated more

A restoring force that keeps particles oscillating around a stable
phase called the synchronous phase ¢,

The opposite happens around point P2 at 7-¢_ i.e. M2 and N2 will
further separate

eva
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In order to have stability, the time derivative of the Voltage and
the spatial derivative of the electric field should satisfy

%S—‘;>0=>;—Z<o | N/
mefans ey | N NS
/N /[
) ) oL, \/ \/

VE=0=> + =0
where X rgpresergs the generjg transverse direction.

External focusing is required by using quadrupoles or solenoids
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Off-momentum particles on the dispersion orbit travel in a
different path length than on-momentum particles

The change of the path length with respect to the momentum
spread is called momentum compaction

AC AP
e = /
C P /\ P+AP
The change of circumference is D(S)AP’P&\: 'p
AP ds
AC = 7{ D—d@ = j{ D )
So the momentum compaction is '

=5 ¢ 1/0)((5)) - <l:<(5>)>
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* From the relativistic momentum  p.— gpe have

AP Aﬁ AE , AP A 1 AP
P ﬁ E P B ve P
and the revolution frequency Af _ (i _a )g

foo P

uz The slippage factor is given by n = % — .

- Y

ec For vanishing slippage factor, 1

s iy . . V= ——

: the transition energy is defined /o
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requency modulated but also
B-field increased synchronousk
to match energy and keep

revolution radius constant.

The number of stable
synchronous particles is equal t
the harmonic number h. They
are equally spaced along the
circumference.

Each synchronous particle has
the nominal energy and follow
the nominal trajectory

Magnetic field increases with
momentum and the per turn
change of the momentum is

(AP)yyn = ep BT, =



n synchrotrons @

M, M, Stable synchr. Particle

I . e forn<0  n/

N,

* For electron synchrotrons, the relativistic yis very large and

1

N=— — Qe R —Q < ()n compaction 1S
, Y

* Above transition, an increase in energy is followed by lower
revolution frequency

* A delayed particle with respect to the synchronous one will get
closer to it (gets a smaller energy increase) and phase stability
occurs at the point P2 (- ¢)) 0
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relation @]

B The RF frequency and phase are related
to the revolution ones as follows

for=hf = A¢=—m9 with 0 = ja)dz‘

_d l d

B From the defmltion of the momentum
compaction and for electrons

_ pS do, | _ L (dw ) -
T w0, \d dE ) =%
p rS ' s
B Replacing the revolutlon frequency change, the following

relation is obtained between the energy and the RF phase
time derivative

AE 1 d¢ R ¢
E. wooah dt coh

S
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ons of motion (@]

e energy gain per turn with respect to the energy gain of
the synchronous particle is

(AE )fIH"H o eV(Sln ¢ Sln ¢ )
B The rate of energy change can be approx1mated by

d(ﬁfE) (AE )m [ = 2:er eV(sm @ —sInaq,)

B The second energy phase relation is written as

d ( AE ceV
— SIn sin
di\ ' E )" 24RE (sin ¢ —sin¢)
B By combining the two energy/phase relations, a 2nd order
differential equation is obtained, similar the pendulum

AN

dl R o@\ ceV
ai‘cahai“) 27RE,

(sing—sin¢,| =
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scillations @

B Expanding the harmonic functions in the vicinity of the
synchronous phase

SIN @ —sSin @, = sin(gl)s + A¢) —sin ¢, = cosp.A¢

B Considering also that the coefficient of the phase derivative
does not change with time, the differential equation reduces
to one describing an harmonic oscillator

) ? h‘A/cosqb
+ Q°Agrien B 2=t :
¢ S ¢7 equency ) R 2nE.

B For stability, the square of the frequency should positive
and real, which gives the same relation for phase stability
when particles are above transition

cosp.<0=rm/2<¢.<7m
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ﬁnvariant @

B For large amplitude oscillations the differential equation of
the phase is written as

éb+ 2, (sin ¢ — sin gbs) =

COS @,

B Multiplying by the time derivative of the phase and
integrating, an invariant of motion is obtained

SA I
2 ) b= 14

R ¢2 92

: S (Cos¢+¢sin¢s)=

2  Coso.

% reducing to the following expression, for small amplitude
¢ oscillations



* In the phase space (energy change
versus phase), the motion is

; ﬁ} E\ *otosDs . described by distorted circles in
H0s | Os ®  the vicinity of ¢, (stable fixed
i ' \—/ point)
\ i U/%\ * For phases beyond 7 - ¢, (unstable
| \ 0 fixed point) the motion is
= unbounded in the phase variable,
|

as for the rotations of a pendulum

| - separatrix
%// * The curve passing through  7-
|

@, is called the separatrix and the

ﬂ\\\ ’ enclosed area bucket
I
I

QZ
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B The time derivative of the RF phase (or the energy change)
reaches a maximum (the second derivative is zero) at the
synchronous phase

B The equation of the separatrix at this point becomes

¢ = 29?(2 +(2¢, — ) tan q/)s)

max

B Replacing the time derivative of the phase from the first
energy phase relation

(?E_E)max -t nhqa‘jEs (2059, +(2¢, - m)sin )

)
This equation defines the energy acceptance which depends
strongly on the choice of the synchronous phase. It plays an
important role on injection matching and influences
strongly the electron storage ring lifetime
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B When the synchronous phase is

equal to 0 (below /

transition) or 7 (above transition),
there is no acceleration. The equation
of the separatrix is written

2
9 _ 2Q? sin’ ¢
AE ER

B Using ﬂ%e (canonical) \2far1able W=2n—=2n ¢

w, ha, o,
and replacmg the expression for the synchrotron frequency

W=12 C\/ 22\2“ ﬁ(mrf% 7, the bucket height is

and the area

2
w, =2& | EVE Ae=2| W dp=8W,
c\2x hO(C 0 17
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B The longitudinal oscillations can be damped directly by
acceleration itself. Consider the equation of motion when the
energy of the synchronous particle is not constant

d

1 (Es¢) — _Q§E5A¢

B From this equation, we obtain a 2nd order differential
equation with a damping term

O+ ="+ QA) =0
P
B From the definition of the synchrotron frequency the
damping coefficient is
% — _9 s
E. (). 18
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bcepts

® Transverse phase space and Beam representation
¥ Beam emittance
B ] .iouville and normalised emittance
¥ Beam matrix
® RMS emittance
B Betatron functions revisited
B Gaussian distribution

Elcaywyn ot ®duoiki twv ETitayuviwy

19



* Under linear forces, any

. . . X A X
particle moves on ellipse in I o |
phase space (x,x’), (y,y). | )
* Ellipse rotates and moves , L_QX S

between magnets, but its area
is preserved. ’

* The area of the ellipse defines
the emittance ® The equation of the ellipse is

vu? + 20’ + Bu’? =€
with a,[3,y, the twiss parameters
® Due to large number of
particles, need of a statistical

description of the beam, and its
size
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&

® Beam is a set of millions/billions of particles (IN)

® A macro-particle representation models beam as a set of n particles
with n<<N  X[um]=1626
150

® Distribution function is a statistical function
representing the number of particles in phase space 10!

between y 4 du, u’ + du’ ol

f(u,u’)dudu’ = number of particles o

100 120 140 160

Y [um] = 254

100r
801

/I’ \ 0

401

g | =

20¢

0
295 300 305 310 315
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Emittance represents the phase-space volume occupied by the
beam

The phase space can have different dimensions

2D (x, x’) or (y, y’) or (o, E)

4D (x, x’,y, y’) or (x, X*, @, E) or (y, y’, ¢, E)

6D (x, x’,y,y’, o, E)
The resolution of my beam observation is very large compared to
the average distance between particles.

The beam modeled by phase space distribution function

f(z, 2", y,y' ¢, E)
The volume of this function on phase space is the beam Liouville
emittance

22



ann equations @

The evolution of the distribution function is described by Vlasov
equation

if _Of p Of
2= CF(q) 2l =0
dt 0t ~ymg Oq op
® Mathematical representation of Liouville theorem stating the
conservation of phase space volume (q, p)

® In the presence of fluctuations (radiation, collisions, etc.)
distribution function evolution described by Boltzmann equation

df _of p Of F(q )(9f df
dt Ot  ~vmodq Op  di lauct

The distribution evolves towards a Maxwell-Boltzmann statistical
equilibrium
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1ttance @

When motion is uncoupled, Vlasov equation still holds for each
plane individually
of

df 0 0

G _Of , PuOF F(u) == =0

dt 0t  ~ymg Ou Op
The Liouville emittance in the 2D (v, p,, ) phase space is still
conserved

In the case of acceleration, the emittance is conserved in the (v, p,,)
but not in the (u,«')diabatic damping)

Considering that o du _ Du

ds  ps
the beam is conserved in the phase space (u,u'p;)

Define a normalised emittance which is conserved during
acceleration

— 67/77'6 24
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We would like to determine the transformation of the beam
enclosed by an ellipse through the accelerator

Consider a vector u = (x,x,y,y,...) in a generalized n-dimensional
Y,y g
phase space. In that case the ellipse transformation is

ul X ltu=7

Application to one dimension gives Y1 u? + 2Ygouu’ + Yoou'? = 1
and comparing with ’yuuQ + 2, ut’ + ﬁuuQ — €,

. : —Q
provides the beam matrix Y, = Bu “ e, = Be,
. N\ % Tu
which can be expanded to more dimensions

Evolution of the n-dimensional phase space from position 1 to
position 2, through transport matrix AA

M- - M =3,

25



%am parameters @

® The average of a function on the beam distribution defined
1 1
(ot w)) = 3 ot d) = [ sw)g,w)duaw

® Taking the square root, the following Root Mean Square (RMS)
quantities are defined
J RMS beam size

Urms = V0w = V/{(u — (u))?)

J RMS beam divergence

Ups = /0l = V(0 = (u))?)

J RMS coupling

(wtt )imms = v/Guw = V/((u = (W) (W = (w)))

26
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Beam modelled as macro-particles
Involved in processed linked to the statistical size
The rms emittance is defined as

€ = \/<u>2<u’>2 _ <uu’>2

It is a statistical quantity giving information about the minimum
beam size

For linear forces the rms emittance is conserved in the case of
linear forces

The determinant of the rms beam matrix d€t<2r m s) = €rms

Including acceleration, the determinant of 6D transport matrices is
not equal to 1 but

67“2/77“2
67“177“1

det(/\/l 1_>2) —

27



* The best ellipse fitting the beam distribution is
Yol + 2a,ut’ + Buu? = e,
* The beam betatron functions can be defined through the rms
emittance

6u —

Tu =
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he Gaussian distribution has a gaussian density profile in
phase space

N xﬂfz + 20,21’ + xx’Q 24 9q 'y 2
f(.fl?, ,CE/’ Y, y,) — Zexp _f)/ 6 + TyY yYy /Byy

2€$,rms 2€y,rms
for which / f(u,u')dudu’ = N
Q The beam boundary is ’Yuu2 + 2c,uu’ + ﬁuuQ — n2€u,rms

Uniform (KV) Gaussian
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* Radiation damping
O Synchrotron oscillations

| Betatron oscillations
| Robinson theorem

* Radiation integrals
* Quantum excitation
* Equilibrium emittances
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Radiation Damping @

* Up to this point, the transport of a relativistic particle around a

ring was treated as a conservative process

* The particle change of momentum (acceleration) results in

emission of synchrotron radiation

* It turns out that this is much more important in circular then

linear accelerators

* The emission of synchrotron radiation results in energy lost by
the particle and the damping of oscillations, called radiation
damping

* This energy lost is recovered by the RF accelerating cavities

in the longitudinal direction but not in the transverse

31
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P, = —

 bmegmicd \ dt

vV <<¢

Larmor Power radiated by non-
relativistic particles is very small

@ P = "7vYmoVv UV~ C

2

P
S 6megmicd \ dt

Power radiated by relativistic
particles in linear accelerators 1is

negligible

Power radiated by relativistic
particles in circular accelerators
is very strong (Licnard, 1898)

32
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*“Electric and Magnetic
Field produced by an
electric charge
concentrated at a point
and travelling on an
arbitrary path”

Prophetically published in
the french journal “The
Electric Light”
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Power inversely proportional to
4™ power of rest mass (proton
2000 times heavier than electron)
On the other hand, for multi TeV
hadron colliders (LHC, FCCpp)
synchrotron radiation is an
important issue (protection with
beam screens)

By integrating around one revolution,
the energy loss per turn is obtained.
For the ILC DR, it is around

4.5 MeV/turn. On the other hand, for
LEPII (120 GeV) it was 6 GeV/turn,
or for FCCee (ttbar flavor at 175
GeV), it will be 7.5GeV/turn i.e.
circular electron/positron machines
of hundreds of GeV become quite
demanding with respect to RF power
(and extremely long) 34



formulas for e/e* @

* The power radiated by a relativistic electron can be rewritten as
cC’ E4 e’c’ | m

P, = E?B? C,=8.85x%x107"°
v D ’ T (Gev)?

* The energy loss per turn can be expressed as

C.E* [ ds I _ ds
Uo = 9 itﬁ 2= @nd radiation integral

* For a lattice with uniform bending radius (iso-magnetic) this yields
E* [GeV]*

p__[m]
* If this energy were not recovered, particles would gradually spiral
inward until lost on vacuum chamber wall

|U() [k@V] = 88.5

* RF cavities replace this lost energy by providing momentum kicks to
the beam in the longitudinal direction
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¥ Damping of synchrof @

B Consider the differential equation of the energy for
longitudinal motion

AE + o, AE + Q?AE =0
1 dU

2Ty dE
where U is the energy requirement per turn of the particle,

and’/ the revolution period and the synchrotron
frequency 02 _ e .WRF Vp COS Qg

E1y

with damping coefficient o, =

B The solution can be written as a damped oscillation in

energy and time with respect to the ideal synchromous
particle AE(t) = Age™ "' cos({2 — ¢s)

T(t) = — e~ =" sin(Qt — ¢y)
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B Note that the synchrotron motion is damped towards the motion of
the synchronous particle

B The damping coefficient is dependent on the energy of the particle
through the radiated power but also through the revolution period.
In the following, we try to establish this relationship

B A particle with energy spread follows a dispersive trajectory with
dispersion D

D AFE

A
ds’:(l—l—Tx)dS:(l—l———

B The energy req o E Jdsg by the integral of

the radiated power in one revolution

_ _ p, 1 D AE
B Differel” = %Psdt = j’{Pst jc= p P(1+ ?f)ds

dE ~ ¢

dU_3%dﬂ+Dﬁ&AE+&)d
iE " p'dE E " E’|” a7
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B Taking into account that the average energy spread around
the ring should be zero the previous integral is written:

a1 dP; D P

— = - + —— | ds

dEl ¢ dFE o b
etc?

B Setting C = king into account the
6meg(moc?)?

definition of the magnetic rigidity, the expression of the
radiation power is written p— ¢ 2 B2
B [ts derivative with respect to the energy gives

d P, P,

where we used the identity d_B _ d_B d_a: _ d_B Q _
JE_ dvdE _ dz B D
B Replacing in the integral at tnetop, o v

U 2U, 1 1
—_— = DPS 2 —
dE E+CE]{ (k’)+p>d$

D
E




X

»,Damping of synchrc

eplacing in the last integral the expression of the power

1 _CE* ['D 1
p e2c2 | p p

4
and taking into account that [/, = ! 7{ P.ds = Ci ds

c e2c3 | p2
the damping of synchrotron motion is written
1 dU U 0 Uy
s 247D
“ = omak _2En, - TP = opn

with the dampmg partition number defined as
§o(2k+%)ds 1,
f ds o Z

B This is a pdardiiielers erur tfly ucrned by the lattice!

D —

B Bending magnets and quads are usually separated and the
damping partition number is usually extremely small
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B Synchrotron radiation emitted in the direction of motion of
electron, whose momentum is reduced

B This reduces the vertical component of the momentum but

Op 1
the angle remains the same  y' = ﬁ
Hin/b’a/ ¢\¢\¢\£\Yl P Hiniﬁa/ B Hy
- , — W BB,
s s

B The key for betatron damping is the energy recovery by the
RF cavities, as only the longitudinal momentum is restored

i H/'n/'a_H — 5

>

IS y

B The change in energy will not affect the Vengcal position but

the angle changes proportionally oy = y’f 40
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of vertic

ecall now solution of Hill’s equations in the vertical plane,
assuming that the beta function is slowly varying (i.e. alpha
function is zero), for simplicity

B(s)

y= Acos¢ and vy = — sin ¢

AA Uy
AAt  2ET, 41

B The betatron oscillation amplitudeis A% = y* + [3(s)y/’ ]2
B The change of the amplitude becomes
5(A%) = B(s)0(y) = 454 = ()

3 5 A2 27 AQ
- B By averaging over all angles (3%(s)y’") = — / sin® ¢dp = —
E A2 SE 2T 0 2
> and A(JA) = ———=
= . 2 U AA U
: B Summing up the energy losses for a full turn == — =
e . . 2F
§ M Thus, in one turn the amplitudes are damped with a constant

Ay —



&

e vertical betatron amplitude is thus exponentially

decaying A(t) = A(O)e—@yt

® Equivalently, the damping of the vertical emittance is given
by e, = €,(0)e !

B This means that the vertical emittance in the absence
of dispersion or coupling will be reduced to zero

B Actually, due to the fact that the radiation emission is
not parallel to the motion (but in an angular
distribution with a width of ~1/vy), there is a “recoil”
preventing vertical oscillations to be reduced to zero

B This gives a “quantum limit”, beyond which the
vertical emittance cannot be further reduced a2
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Damping of horizc

B The horizontal motion is described by

AFE A AFE
I—x@—I—ZUQ_ACOS¢—|—DF and z’ —x6+x __5(8) sing + D' — =

B Energy change Udue to photon emission results in a change
of the dispersive part but not of the total coordinates so that

B The change of the Betatron amplitude A% = a:% + [5(8)56/5} ’

becomes AJA = —(Diy + 3 (s)D'y)

B The energy loss 1n an element d! 1s written

P 1 P, dB
w— D)y L(p +22 2200 ) (1+ 22 ) ds
C C B dzx ,0

B Substituting to the change mn amplitude and averaging over
the angles (and some patience...)

(1-D)

43
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_ Uo the damping coefficient _ o
~U=Phg " T 2ET,
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rouping the damping constants and introducing the three damping
times and damping partition numbers

1 Uo Uo
g — — = 2 D p— S
“ Ts 2ETO ( + ) 2ETO j
Y 1, 2FET, 2ET,""
1 Ug Uo
“ Ty 2ETO ( ) 2ETO j

B The Robinson theorem (1958) states that the sum of the damping
partition number is an invariant

e+ Ty +Ts =4

B In storage ring with separated tunction magnets, D <1

Je=1, Jy=1, Js =2

B The longitudinal dampmg OCCUrs at twice the rate of the damping in
the two transverse dimensions 44
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% Transverse e

adiation damping provides a direct mechanism to take
“hot” injected beams and reduce the equilibrium parameters
to a regime useful for high luminosity colliders and high
brightness light sources.

B At the same time, the radiated power plays a dominant role
in the design of the associated hardware and its protection

B [f the only effect was radiation damping, the transverse
emittances would be damped to zero.

B Photons are emitted in energy bursts in localized areas and
horizontal betatron oscillations are excited as well (quantum
fluctuations)

B Vertical emittance can become very small and only excited by
coupling with the horizontal or residual vertical dispersion

B Flectrons are influenced by this stochastic effect and
eventually loose memory (unlike hadrons)

Elcaywyn ot ®duoiki twv ETitayuviwy
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Properties @

he emission of photons by the beam is a random process
around the ring

Photons are emitted within a cone around the direction of the
beam particle with a characteristic angle 1/

This quantized process excites oscillations in each dimension

E

) N\
In the absence o ' oMectle\e‘\eéects which also

serve to heat the beam, the balance between quantum
excitation and radiation damping results in the equilibrium
beam properties that are characteristics of a given ring lattice

46
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Fon - Longitudinal

* For the very short timescales corresponding to
photon emission, we can take the equations of motion
we previously obtained for synchrotron motion and
write:

EQ°

aZ

C

AE*(§+ =4

where Ay is a constant of the motion.

* The change in A; due to the emission of photons
should be estimated
*The emission of an individual photon will not affect

the time variable, however, it will cause an
instantaneous change in the value of AE a7



- Longitudinal

rom the solution of the synchrotron equation of motion, the energy
difference is

O(AE)= A COSQ( t— l(')) —EUCOSQ( t— Q) = AcosQ( - I:)

where u is the energy radiated at time t,. Thus, for t=t,

UY 24u

A 4 [ 7 = cosQ(q lg))
and AA <A2 ,AL> Zz

* Considering the rate of photon emission N , the average change in
synchrotron amplitude due to photon emission is

$ ¢ 48
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ion - Longitudinal @]

* By including, the radiation damping term, the net change
in the synchrotron ar plitude can be written as:

d<; :—ZaE<A2>+N u

* The equilibrium properties of a bunch are obtained when
the rate of growth from quantum excitation and the rate of
damping from radiation damping are equal

* For an ensemble of particles where the rms energy
amplitude is represented by the rms energy spread, the

equilibrium (;)znilflaozljari {v/z\kt}e:n@,ﬁ/ (¢)).
ET 2 40/ E°

o
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e term <N <u2>)1ss the ring-wide average of the photon
emission rate, N, times the mean square energy loss
associated with each emission

N zé(u)du and N <u2>:é2n(u)du

where n(u) is the photon emission rate at energy u,

0 (4) L ()

with C is the ring circumference.

* The derivation of the photon spectrum emitted in a
magnetic field is quite lengthy and we just quote the result

E P
Y where Cq: EENgt =3.84x107"
p 324/3 T s
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. Integratig around the ring then yields the RMS beam energy
spread

2
0= &E:Cyz £ =Cy £ where /:'ﬁ
o

\EY T, 21 +1, :

* Using this expression with the synchrotron equations of motion,
the bunch length is related to the energy spread by

2 2
CVWQ‘I thé' Harmonic number
2mheVy| cos
0| cos ¢ FrpC
h =
* The bunch length scales inversely with the square rootcof the RF
voltage.

O, = 0§
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oz’

B Assume electron along nominal momentum orbit with
initially negligible emittance
B After photon emission with momentum Ap, electron’s
momentum becomes p,-Ap and the trajectory becomes
AP

dr = D—- and 5:5/:D/ﬂ
p p
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% Dispersion emitt

&

ecall that the emittance of the betatron ellipse in
phase space is

e, =19 X[9+2a(9 X g X|5+5(9 X5

BTaking into account the change of the position and

angle due to the photon emission, the change of the
emittance 1s

:(yDZ+2aDD+,BD2)£55) (3[5—5}

with the “dispersion” emittance (or curly H-function)

H(s) = B(s)D(s)" + 2a(s) D(s) D'(s) + 7(s)D(s)"

53
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Horizontal equili

Averaging over all photon energies and emission
probabilities, the equilibrium emittance is derived as

Hz(s)
— CQ/YQJJ || C?SW__&.th/VQ Ls

Jz fﬁp%ds ja:' ZQ
v > " 383%x 10713 m

: . 17323 moc
B For isomagnetic ring with separatea runction magnets the

equilibrium emittance is written

E?2 1 [l
ex = 1.47 x 1076 /be”d Ha(s)ds
. p lpend /0 ,
B The integral depends on the optics functions on the bends

B [t gets small for small horizontal beta and dispersion, but this
necessitates strong quadrupoles

B Smaller bending angle and lower energy reduce equilibrium
emittance 54
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n - Vertical @

n the vertical dimension, assuming an ideal ring with no vertical
dispersion, the quantum excitation of the emittance is determined by
the opening angle of the emitted photons. The resulting perturbation
to the vertical motion can be described as:

Sy=0 5y= A—g 0 2
and the effect to the emittance is e = ﬂ? 9 \

* Averaging over all photon energies and emission
probabilities, the quantum limit of the vertical emittance is
derived as

95
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c Emittance Coupling

* For typical storage ring parameters, the vertical emittance due to
quantum excitation is very small

* Assuming a typical f, values of a few 10’s of meters and bending
radius of ~100 m, the quantum limit is g, ~ 0.1 pm.

*The observed sources of vertical emittance are:

emittance coupling whose source is ring errors which couple
the vertical and horizontal betatron motion

vertical dispersion due to vertical misalignment of the
quadrupoles and sextupoles and angular errors in the dipoles

* The vertical and horizontal emittances in the presence of a

collection of such errprs around a storage ring is commonly described

: g =——¢,; € =——¢, for 0<kx<1
ds. Y 1+ Y 14k

g, 1s the horizontal equilibrium (natural) emittance.
56



Radiation integrals

D
1 = ]{ ;dS Momentum compaction factor

1
1y = 7{ p—QdS Energy loss per turn

Equilibrium
energy spread

p[3

—_orR
U = %E‘*IQ.
C =
2T, + 1,

]{23(1 + 2kp?)ds
0

7
9 \78:2+_47D:

Damping partition numbers

Equilibrium betatron emittance
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