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Longitudinal dynamics
 RF acceleration
Energy gain and phase stability
Momentum compaction and transition
Equations of motion
Small amplitudes
Longitudinal invariant

Separatrix
Energy acceptance
Stationary bucket
Adiabatic damping
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RF acceleration
• The use of RF fields allows an arbitrary number of accelerating 

steps in gaps and electrodes fed by RF generator
• The electric field is not longer continuous but sinusoidal 

alternating half periods of acceleration and deceleration
• The synchronism condition for RF period TRF and particle 

velocity v 

 

    

 

L  vTRF /2  c


RF

 /2
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Energy gain
Assuming a sinusoidal electric field where the 
synchronous particle passes at the middle of the gap g, at time t = 
0, the energy is

And the energy gain is

and finally with the transit time 

factor defined as

It can be shown that in general 

    

 

W(r,t)  q Ezdz  q E0
g/2

g/2

 cos(RF

z
v

 s)dz

T
2/

2/sin
qVqVW 




    

 

Ez  E0 cos(RFt  s)

    

 

T  sin(g/2v)
g/2v

    

 

T 
E(0,z)cost(z)dz

g/2

g/2



E(0,z)dz
g/2

g/2


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Phase stability
• Assume that a synchronicity condition is fulfilled at the phase s 

and that energy increase produces a velocity increase
• Around point P1, that arrives earlier (N1) experiences a smaller 

accelerating field and slows down
• Particles arriving later (M1) will be accelerated more
• A restoring force that keeps particles oscillating around a stable 

phase called the synchronous phase s

• The opposite happens around point P2 at -s, i.e. M2 and N2 will 
further separate
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RF de-focusing
In order to have stability, the time derivative of the Voltage and 
the spatial derivative of the electric field should satisfy

In the absence of electric charge        the divergence of 
the field is    given by Maxwell’s equations

where x represents the generic transverse direction.
External focusing is required by using quadrupoles or solenoids

    

 

V
t

 0  E
z

 0
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Momentum compaction
• Off-momentum particles on the dispersion orbit travel in a 

different path length than on-momentum particles
• The change of the path length with respect to the momentum 

spread is called momentum compaction

• The change of circumference is

• So the momentum compaction is
Δθ

P+ΔP

P

ρ

D(s)ΔP/P
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Transition energy
• The revolution frequency of a particle is

• The change in frequency is 

• From the relativistic momentum          we have

   for which
    
and the revolution frequency  

 The slippage factor is given by 

For vanishing slippage factor, 
the transition energy is defined
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Synchrotron
• Frequency  modulated but also 

B-field increased synchronously 
to match energy and keep 
revolution radius constant. 

• The number of stable 
synchronous particles is equal to 
the harmonic number h. They 
are equally spaced along the 
circumference.

• Each synchronous particle has 
the nominal energy and follow 
the nominal trajectory

• Magnetic field increases with 
momentum and the per turn 
change of the momentum is

ESRF Booster
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Phase stability on electron synchrotrons

• For electron synchrotrons, the relativistic  is very large and

as momentum compaction is 
positive in most cases

• Above transition, an increase in energy is followed by lower 
revolution frequency 

• A delayed particle with respect to the synchronous one will get 
closer to it (gets a smaller energy increase) and phase stability 
occurs at  the point P2 ( - s)
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Energy and phase relation
 The RF frequency and phase are related 

to the revolution ones as follows 

and

 From the definition of the momentum 
compaction and for electrons

 Replacing the revolution frequency change, the following 
relation is obtained between the energy and the RF phase 
time derivative

c

c c
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Longitudinal equations of motion
 The energy gain per turn with respect to the energy gain of 

the synchronous particle is

 The rate of energy change can be approximated by

 The second energy phase relation is written as

 By combining the two energy/phase relations, a 2nd order 
differential equation is obtained, similar the pendulum 

    

 

d
dt

R
cch

d
dt











ceV
^

2REs

sin  sin s   0
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 Expanding the harmonic functions in the vicinity of the 
synchronous phase

 Considering also that the coefficient of the phase derivative 
does not change with time, the differential equation reduces 
to one describing an harmonic oscillator 

with frequency

 For stability,  the square of the frequency should positive 
and real, which gives the same relation for phase stability 
when particles are above transition

Small amplitude oscillations

    

 

coss  0   /2  s  



Ε
ισ

α
γω

γή
 σ

τη
 Φ

υσ
ικ

ή
 τ

ω
ν 

Ε
π

ιτ
α

χυ
ντ

ώ
ν

14

 For large amplitude oscillations the differential equation of 
the phase is written as

 Multiplying by the time derivative of the phase and 
integrating, an invariant of motion is obtained

reducing to the following expression, for small amplitude 
oscillations

Longitudinal motion invariant
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Separatrix
• In the phase space (energy change 

versus phase), the motion is 
described by distorted circles in 
the vicinity of s (stable fixed 
point)

• For phases beyond  - s (unstable 
fixed point) the motion is 
unbounded in the phase variable, 
as for the rotations of a pendulum

• The curve passing through        - 
s is called the separatrix and the 
enclosed area bucket
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 The time derivative of the RF phase (or the energy change) 
reaches a maximum (the second derivative is zero) at the 
synchronous phase

 The equation of the separatrix at this point becomes

 Replacing the time derivative of the phase from the first 
energy phase relation

 This equation defines the energy acceptance which depends 
strongly on the choice of the synchronous phase. It plays an 
important role on injection matching and influences  
strongly the electron storage ring lifetime

Energy acceptance



Ε
ισ

α
γω

γή
 σ

τη
 Φ

υσ
ικ

ή
 τ

ω
ν 

Ε
π

ιτ
α

χυ
ντ

ώ
ν

17

 When the synchronous phase is  chosen to be 
equal to 0 (below 

     transition) or  (above transition), 
     there is no acceleration. The equation 
     of the separatrix is written

 Using the (canonical) variable

and replacing the expression for the synchrotron frequency

       . For = , the bucket height is 

        and the area

Stationary bucket

    

 

W  2 C
c

qV
^

Es

2 hc

sin 
2

    

 

Wbk  2 C
c

eV
^

Es

2 hc     

 

Abk  2 W d
0

2 

  8Wbk
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 The longitudinal oscillations can be damped directly by 
acceleration itself. Consider the equation of motion when the 
energy of the synchronous particle is not constant

 From this equation, we obtain a 2nd order differential 
equation with a damping term

 From the definition of the synchrotron frequency the 
damping coefficient is

Adiabatic damping
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Outline – Phase space concepts

 Transverse phase space and Beam representation
 Beam emittance

 Liouville and normalised emittance
 Beam matrix

 RMS emittance
 Betatron functions revisited

 Gaussian distribution
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 The equation of the ellipse is

    with α,β,γ, the twiss parameters
 Due to large number of 

particles, need of a statistical 
description of the beam, and its 
size

Transverse Phase Space

• Under linear forces, any 
particle moves on ellipse in 
phase space (x,x’), (y,y’).

• Ellipse rotates and moves 
between magnets, but its area 
is preserved.

• The area of the ellipse defines 
the emittance

x

x´

x

x´
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 Beam is a set of millions/billions of particles (N)
 A macro-particle representation models beam as a set of n particles 

with n<<N
 Distribution function is a statistical function                   

representing the number of particles in phase space              
between 
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Beam representation
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Liouville emittance

 Emittance represents the phase-space volume occupied by the 
beam

 The phase space can have different dimensions
 2D (x, x’) or (y, y’) or (φ, Ε)
 4D (x, x’,y, y’) or (x, x’, φ, Ε) or (y, y’, φ, Ε)
 6D (x, x’, y, y’, φ, Ε)

 The resolution of my beam observation is very large compared to 
the average distance between particles.

 The beam modeled by phase space distribution function

 The volume of this function on phase space is the beam Liouville 
emittance
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 The evolution of the distribution function is described by Vlasov 
equation

 Mathematical representation of Liouville theorem stating the 
conservation of phase space volume 

 In the presence of fluctuations (radiation, collisions, etc.) 
distribution function evolution described by Boltzmann equation

 The distribution evolves towards a Maxwell-Boltzmann statistical 
equilibrium

Vlasov and Boltzmann equations
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 2D and normalized emittance

 When motion is uncoupled, Vlasov equation still holds for each 
plane individually

 The Liouville emittance in the 2D            phase space is still 
conserved

 In the case of acceleration, the emittance is conserved in the      
but not in the       (adiabatic damping)

 Considering that 

the beam is conserved in the phase space
 Define a normalised emittance which is conserved during 

acceleration
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 We would like to determine the transformation of the beam 
enclosed by an ellipse through the accelerator

 Consider a vector u = (x,x’,y,y’,…) in a generalized n-dimensional 
phase space. In that case the ellipse transformation is

 Application to one dimension gives 

and comparing with 

provides the beam matrix 

which can be expanded to more dimensions 
 Evolution of the n-dimensional phase space from position 1 to 

position 2, through transport matrix 

Beam matrix
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 The average of a function on the beam distribution defined

 Taking the square root, the following Root Mean Square (RMS) 
quantities are defined
 RMS beam size

 RMS beam divergence

 RMS coupling 

Root Mean Square (RMS) beam parameters
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RMS emittance
 Beam modelled as macro-particles
 Involved in processed linked to the statistical size
 The rms emittance is defined as

 It is a statistical quantity giving information about the minimum 
beam size

 For linear forces the rms emittance is conserved in the case of 
linear forces

 The determinant of the rms beam matrix
 Including acceleration, the determinant of 6D transport matrices is 

not equal to 1 but 
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Beam betatron functions
• The best ellipse fitting the beam distribution is

• The beam betatron functions can be defined through the rms 
emittance
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 The Gaussian distribution has a gaussian density profile in 
phase space

for which 

 The beam boundary is

          Uniform (KV)                                Gaussian

Gaussian distribution
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Outline

• Radiation damping
o  Synchrotron oscillations
o  Betatron oscillations
o  Robinson theorem

• Radiation integrals
• Quantum excitation
• Equilibrium emittances



Ε
ισ

α
γω

γή
 σ

τη
 Φ

υσ
ικ

ή
 τ

ω
ν 

Ε
π

ιτ
α

χυ
ντ

ώ
ν

31

Synchrotron Radiation and Radiation Damping

• Up to this point, the transport of a relativistic particle around a 

ring was treated as a conservative process 

• The particle change of momentum (acceleration) results in 

emission of synchrotron radiation

• It turns out that this is much more important in circular then 

linear accelerators

• The emission of synchrotron radiation results in energy lost by 

the particle and the damping of oscillations, called radiation 

damping

• This energy lost is recovered by the RF accelerating cavities  

in the longitudinal direction but not in the transverse
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Why circular machines?

Larmor Power radiated by non-
relativistic particles is very small

Power radiated by relativistic 
particles in linear accelerators  is 
negligible

Power radiated by relativistic 
particles in circular accelerators 
is very strong (Liénard, 1898)
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Lienard’s Paper

Prophetically published in 
the french journal “The 
Electric Light”

•“Electric and Magnetic 
Field produced by an 
electric charge 
concentrated at a point 
and travelling on an 
arbitrary path”



Ε
ισ

α
γω

γή
 σ

τη
 Φ

υσ
ικ

ή
 τ

ω
ν 

Ε
π

ιτ
α

χυ
ντ

ώ
ν

34

Why electrons?
Power inversely proportional to 
4th power of rest mass (proton 
2000 times heavier than electron)
On the other hand, for multi TeV 
hadron colliders (LHC, FCCpp) 
synchrotron radiation is an 
important issue (protection with 
beam screens)
By integrating around one revolution, 
the energy loss per turn is obtained. 
For the ILC DR, it is around               
4.5 MeV/turn. On the other hand, for 
LEPII (120 GeV) it was 6 GeV/turn, 
or for FCCee (ttbar flavor at 175 
GeV), it will be 7.5GeV/turn i.e. 
circular electron/positron machines 
of hundreds of GeV become quite 
demanding with respect to RF power 
(and extremely long)
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Synchrotron Radiation formulas for e-/e+

• The power radiated by a relativistic electron can be rewritten as

           with

• The energy loss per turn can be expressed as

           with                    the 2nd radiation integral 

• For a lattice with uniform bending radius (iso-magnetic) this yields

• If this energy were not recovered, particles would gradually spiral 
inward until lost on vacuum chamber wall
• RF cavities replace this lost energy by providing momentum kicks to 
the beam in the longitudinal direction
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Damping of synchrotron oscillations
 Consider the differential equation of the energy for 

longitudinal motion 

    with damping coefficient                  

where     is the energy requirement per turn of the particle,  
and       the revolution period and the synchrotron 
frequency

 The solution can be written as a damped oscillation in 
energy and time with respect to the ideal synchromous 
particle
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Damping of synchrotron oscillations
 Note that the synchrotron motion is damped towards the motion of 

the synchronous particle
 The damping coefficient is dependent on the energy of the particle 

through the radiated power but also through the revolution period. 
In the following, we try to establish this relationship

 A particle with energy spread follows a dispersive trajectory with 
dispersion D

 The energy requirement per turn can be obtained by the integral of 
the radiated power in  one revolution

 Differentiating with respect to the energy
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Damping of synchrotron oscillations II
 Taking into account that the average energy spread around 

the ring should be zero the previous integral is written:

 Setting     and taking into account the

definition of the magnetic rigidity, the expression of the 
radiation power is written 

 Its derivative with respect to the energy gives

where we used the identity 

 Replacing in the integral at the top,
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Damping of synchrotron oscillations III
 Replacing in the last integral the expression of the power

and taking into account that 

the damping of synchrotron motion is written 

with the damping partition number defined as

 This is a parameters entirely defined by the lattice!
 Bending magnets and quads are usually separated and the 

damping partition number is usually extremely small
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Damping of vertical oscillations
 Synchrotron radiation emitted in the direction of motion of 

electron, whose momentum is reduced
 This reduces the vertical component of the momentum but 

the angle remains the same

 The key for betatron damping is the energy recovery by the 
RF cavities, as only the longitudinal momentum is restored

 The change in energy will not affect the vertical position but 

the angle changes proportionally



E

RF Cavity
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Damping of vertical oscillations II
 Recall now solution of Hill’s equations in the vertical plane, 

assuming that the beta function is slowly varying (i.e. alpha 
function is zero), for simplicity

 The betatron oscillation amplitude is
 The change of the amplitude becomes

 By averaging over all angles 

and 
 Summing up the energy losses for a full turn
 Thus, in one turn the amplitudes are damped with a constant
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Damping of vertical oscillations II
 The vertical betatron amplitude is thus exponentially 
decaying

 Equivalently, the damping of the vertical emittance is given 
by

 This means that the vertical emittance in the absence 
of dispersion or coupling will be reduced to zero

Actually, due to the fact that the radiation emission is 
not parallel to the motion (but in an angular  
distribution with a width of ~1/ ), there is a “recoil” γ
preventing vertical oscillations to be reduced to zero

 This gives a “quantum limit”, beyond which the 
vertical emittance cannot be further reduced
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Damping of horizontal oscillations
 The horizontal motion is described by 

 Energy change  due to photon emission results in a change 
of the dispersive part but not of the total coordinates so that

 The change of the Betatron amplitude
becomes

 The energy loss in an element dl is written

 Substituting to the change in amplitude and averaging over 
the angles (and some patience…)

        and the damping coefficient 
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Robinson theorem
 Grouping the damping constants and introducing the three damping 

times and damping partition numbers

 The Robinson theorem (1958) states that the sum of the damping 
partition number is an invariant

 In storage ring with separated function magnets,          and

 The longitudinal damping occurs at twice the rate of the damping in 
the two transverse dimensions 
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Transverse emittances
 Radiation damping provides a direct mechanism to take 

“hot” injected beams and reduce the equilibrium parameters 
to a regime useful for high luminosity colliders and high 
brightness light sources.  

 At the same time, the radiated power plays a dominant role 
in the design of the associated hardware and its protection

 If the only effect was radiation damping, the transverse 
emittances would be damped to zero.

 Photons are emitted in energy bursts in localized areas and 
horizontal betatron oscillations are excited as well (quantum 
fluctuations)

 Vertical emittance can become very small and only excited by 
coupling with the horizontal or residual vertical dispersion

 Electrons are influenced by this stochastic effect and 
eventually loose memory (unlike hadrons)
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Equilibrium Beam Properties
• The emission of photons by the beam is a random process 

around the ring
• Photons are emitted within a cone around the direction of the 

beam particle with a characteristic angle 1/ 
• This quantized process excites oscillations in each dimension

• In the absence of resonance or collective effects, which also 
serve to heat the beam, the balance between quantum 
excitation and radiation damping results in the equilibrium 
beam properties that are characteristics of a given ring lattice
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Quantum Excitation - Longitudinal
• For the very short timescales corresponding to 
photon emission, we can take the equations of motion 
we previously obtained for synchrotron motion and 
write:

where AE is a constant of the motion.

• The change in AE due to the emission of photons 
should be estimated
•The emission of an individual photon will not affect 
the time variable, however, it will cause an 
instantaneous change in the value of 

E2 t  
E22

c
2

 2 t   AE
2
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Quantum Excitation - Longitudinal
• From the solution of the synchrotron equation of motion, the energy 
difference is

where u is the energy radiated at time t1.  Thus, for t=t1

          and 

• Considering the rate of photon emission N , the average change in 
synchrotron amplitude due to photon emission is

()  A
0
cos t t

0   u
E

cos t t
1   A

1
cos t t

1 

A
1
2  A

0
2  u

E











2


2A

0
u

E
cos t

1
 t

0 

A2  A2  A
0
2  u2

E2

22

0

d A u

dt E

� �
 � �

� �
N
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Quantum Excitation - Longitudinal
• By including, the radiation damping term, the net change 
in the synchrotron amplitude can be written as:

• The equilibrium properties of a bunch are obtained when 
the rate of growth from quantum excitation and the rate of 
damping from radiation damping are equal

•  For an ensemble of particles where the rms energy 
amplitude is represented by the rms energy spread, the 
equilibrium condition are written as

d A2

dt
 2E A2 N

u2

E2

 
2 

 E

E











2


A2

2


N u2

s

4EE2
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Photon Emission
• The term              is the ring-wide average of the photon 

emission rate, N, times the mean square energy loss 
associated with each emission

   where n(u) is the photon emission rate at energy u, 

    with C is the ring circumference.  
• The derivation of the photon spectrum emitted in a 

magnetic field is quite lengthy and we just quote the result

2

s
uN

 2 2

0 0
( )n u du u u n u du

� �
 � �    and      N N

N u2

s
 1

C
N u2 ds

N u2  2Cq
2
E P


     where     Cq  55

32 3


mc

 3.841013m
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Energy Spread and Bunch 
Length

• Integrating around the ring then yields the RMS beam energy 
spread

• Using this expression with the synchrotron equations of motion, 
the bunch length is related to the energy spread by

, with the harmonic number 

• The bunch length scales inversely with the square root of the RF 
voltage.

 
2 

 E

E











2

 Cq
2 I

3

J sI2

  = Cq
2 I

3

2I
2

 I
4

     where     I
3

 ds


3
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Quantum excitation - horizontal

and

photon emission

 Assume electron along nominal momentum orbit with 
initially negligible emittance

 After photon emission with momentum Δp, electron’s 
momentum becomes p0-Δp and the trajectory becomes
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Dispersion emittance
Recall that the emittance of the betatron ellipse in 

phase space is

Taking into account the change of the position and 
angle due to the photon emission, the change of the 
emittance is

   
with the “dispersion” emittance (or curly H-function)

x   s  x2 s   2 s  x s  x s    s  x 2 s 

x  D2  2D D   D 2   p
p











2

 H s   p
p











2
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Horizontal equilibrium emittance
 Averaging over all photon energies and emission 

probabilities, the equilibrium emittance is derived as

            ,  with

 For isomagnetic ring with separated function magnets the 
equilibrium emittance is written

 The integral depends on the optics functions on the bends
 It gets small for small horizontal beta and dispersion, but this 

necessitates strong quadrupoles 
 Smaller bending angle and lower energy reduce equilibrium 

emittance
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Quantum Excitation - Vertical
• In the vertical dimension, assuming an ideal ring with no vertical 
dispersion, the quantum excitation of the emittance is determined by 
the opening angle of the emitted photons. The resulting perturbation 
to the vertical motion can be described as:

and the effect to the emittance is 

•  Averaging over all photon energies and emission 
probabilities, the quantum limit of the vertical emittance is 
derived as

 y 0           y  p
p



y  p
p













2

y

y 
Cq

2J yI 2

y

3 ds
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Vertical Emittance & Emittance Coupling
• For typical storage ring parameters, the vertical emittance due to 
quantum excitation is very small  
• Assuming a typical y values of a few 10’s of meters and bending 
radius of ~100 m, the quantum limit is y ~ 0.1 pm.  

•The observed sources of vertical emittance are:
o emittance coupling whose source is ring errors which couple 

the vertical and horizontal betatron motion
o vertical dispersion due to vertical misalignment of the 

quadrupoles and sextupoles and angular errors in the dipoles
• The vertical and horizontal emittances in the presence of a 
collection of such errors around a storage ring is commonly described 
as:

0 is the horizontal equilibrium (natural) emittance.

0 0

1
; 0 1

1 1y x

    
 

   
 

      for  
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Radiation integrals

Equilibrium 
energy spread

Equilibrium betatron emittance

    Damping partition numbers

Energy loss per turn

Momentum compaction factor
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