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-1 Harmonic oscillator

 Transport Matrices
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m Cartesian coordinates not useful to describe motion In
an accelerator

m Instead we use a system following an ideal path along
the accelerator

4 Particle trajectory ('u_x7 uy’ uZ) — (ux7 Uy7 uS)

d?s
m The curvatureis k = ———

. ds?
m From Lorentz equation
dp d?s , d*s

= MY = MY =

dt?
m The ideal path is defined k =

= —mryv’k = g|v x B|

1= x B
pvs
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e system ©)

m Consider a particle with charge g moving
Particle trajectory in the presence of transverse magnetic
fields

Choose cylindrical coordinate system
(rhpy), withr = x+p and ¢ = slp

m The radius vector is
R:RO‘l_’rur_l_yuy

m For asmall displacement de
du, = dpuy , duy = —dou, , duy =0
m Thanthevelocityis R = ru, + Tfﬁuqs + Juy
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tion @)
Setting the electric field to zero and the magnetic field
B = (BrqubvBy) — (Bl’aOvBy)
The Lorentz equations become
p=qvxB=gq [—rgﬁByur + (yBy — 7By)uy + réBxuy}

Replacing the momentum with the adequate expression and splitting the
equations for the r and y direction

ymo (i —r¢?) = —qroB,
’Ym()?j — qr¢Bx
Replace r¢ =vg,r=z+p and as vy >> v, v, — P/vy = ymy
The equations of motion in the new coordinates are

P,. v
— (& — : ) = —qugBy
Vg p+
P .
—y = qugBy
Vg



1 1 T
= Note that for x<<p = —(1—--)
. _ S ptx _ _
m |t is convenient to consider the arc length s as the independent variable

ds = pde = pdt = dt ~ vy(1 — Z)dt
s = pdop = po v¢p+x Vg ( p)
d dsd r.d 2
and — = — — = 1 — 2)— a2
i was U D) aE N ey
Denot dx 2 d*x 2!
u enolre — — — =
ds " ds?

m The general equations of motion are

s o 1(1_5)_@

; pop P

3 oo qB.

9;- Remark: Note that without the approximations, the equations are nonlinear and
<  coupled!

3

§' The fields have to be defined
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B Consider s-dependent fields from dipoles and normal

quadrupoles By = By(s) — g(s)x, B, = —g(s)y
AP

B The total momentum can be written P = FPy(1 + ?)

P
B With magnetic rigidity Bop = —and normalized gradient
q
S
9(s) the equations of motion are

k(s) = =—==
()= 2 _
//1\\ // 1 AP\
x”—(k(s)—l ZDZC = !
2As)
y' +k(s)y = 0

B Inhomogeneous equations with s-dependent coefficients

-
B

B Note that the term 1/p? corresponds to the dipole week
focusing

B The term AP/(Pp) represents off-momentum particles

Linear fields
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B Solutions are combination of the ones from the
homogeneous and inhomogeneous equations

B Consider particles with the design momentum.
The equations of motion become

2"+ K.(s)z = 0
y// -+ Ky(S) y = 0 George Hill
with i, (s) = - (k(S) - p(i)2> , K, (s) = k(s)

B Hill’s equations of linear transverse particle motion

B Linear equations with s-dependent coefficients (harmonic
oscillator with time dependent frequency)

B In a ring (or in transport line with symmetries), coetficients
are periodic K.(s) = Kx(s + C), Ky(s) = Ky(s+C)

B Not straightforward to derive analytical solutions for whole
accelerator



spring @]

B Consider K(s) = k, = constant
uw' 4+ ko u=0

B Equations of harmonic oscillator
with solution

Lo u(s) = C(s) u(0) + S(s) «/(0)
u'(s) = C'(s)u(0) + S'(s)u’(0)
with

C(s) = cos(vkos) , S(s)= \/%sin(\/l?os) for ko> 0
C(s) = cosh(y/|ko|s) , S(s) = \/i]fﬂsinh(mts) for k, <0

m Note that the solution can be written in matrix form

G’((?)) B <g’ ((i)) 5 ’((i))> (3’((%)))

A A A
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&

B General transfer matrix from s, to s

(o), =m0t (i) = (G sic) ().

B Note that det(M(s|sg)) = C(s|s0)S"(s|sg) — S(s|sg)C'(s]|sg) =1
which is always true for conservative systems

B Note also that M (sg|sg) = ((1) (1) =7

B The accelerator can be build by a series of matrix multiplications

M (sn|s0) = M(sn|Sp—1) ... M(s3|s2) - M(s2|s1) - M(s1]s0)

\ . 7
Y

S, S, Sy eeeS., R o fromsytos,
% >n o fromsytos,
—
from s, to s,
— —

—_——

froms,tos
0 n "
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B System with normal symmetry

1 1 s

: ; —>

L A\ —

M = (a b) M = (a b)
c d
2
B . a4 + bc a+d)
Mot =M - M =M _((a—i—d d2—|—bc)
B System with mirror symmetry

S
>

- __J N\ -
M (“\b> M, = (d b)
c - d c a
) 4
——

Mtot:MT'M:(

ad + be 2bd
2ac ad + cb

12



B Combine the matrices for each plane
() =6 56) ()
()= (@ 36) ()

to get a total 4x4 matrix

Eicaywyn otn ®uoiki Twv EmiTaxuvtwy
N
~
V)
—

13



Eicaywyn otn ®uoiki Twv EmiTaxuvtwy

&

B Consider a drift (no magnetic elements) of length L=s-s5,

(i) = (o "77) (i

L

/ /
u(s) = wug+ (s— so)uyg = ug + Luy

u'(s) = g

)

1 —
Masn(slso) = (i *7)

B Position changes if particle has a slope which remains unchanged.

L

Real Space

Phase Space
14
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B Consider a lens with focal length +f

Miens(8]s0) = (

(o) = (5 1) ()

B Slope diminishes (focusing) or 1
(defocusing) for positive position, which remains
unchanged.

15
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B Consider a quadrupole magnet of length L = s-s,.
The field is

By = —g(s)x, By =—g(s)y

B with normalized quadrupole gradient (in m2) -|-g&

g(s)
k(s) = Bop

The transport through a quadrupole is

(u(s)) _ cos(VE(s — sg)) ﬁ sin(vVk(s — sg)) (
u'(s))  \Vksin(Vk(s —50))  cos(Vk(s — 50))

16



upoles @]
= For a focusing quadrupole (k>0)

Map = ( cos(vVkL) ﬁsin(\/EL))

—Vksin(vkL)  cos(VEL)

B For a defocusing quadrupole (k<0)

cosh(+/]k|L) —L_sinh(+\/]k[L)
_ N
Ma («/k sinh(y/[FIL)  cosh(y/Tk[ L) )

B By setting /&L — 0

1 0 1 0
MQF,QD — (—kL 1) — (_% 1) — Mlens

B Note that the sign of k or fis now absorbed inside the symbol

B In the other plane, focusing becomes defocusing and vice
versa
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" Consider a dipole of (arc) length L.

1
B By setting in the focusing quadrupole matrix k¥ = — > 0 the
transfer matrix for a sector dipole becomes a

cos 6 sin 0
Msector — ( 1 P )

—5 sinf@ cos@

L arc length

with a bending radius 0 = — 90° so° L

P
z @ In the non-deflecting plane L — 0

1 L
Msector — (O 1> — Mdrift

B This is a hard-edge model. In fact, there is some edge
focusing in the vertical plane

Eicaywyn otn ®uoiki Twv EmiTaxuvtwy

B Matrix generalized by adding gradient (synchrotron magnet)'
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Consider a rectangular dipole with bending angle 6. At each edge of
length AL, the deflecting angle is changed by
AL  ftano

o =
. : : P P 1 tano
i.e., it acts as a thin defocusing lens with focal length — =
p

The transfer matrix is Mrect = Medge » Mector * Medge with

1 0
Medge — <—tan(5) 1)
For B6<<1, 6=60/2 ’

In deflecting plane (like drift), in non-deflecting plane (like sector)

1 psinf ([ cosf  psind
Mx;rect — (0 1 )My;rect - (—% sin 6 COS@) 19



B Consider a quadrupole doublet,
i.e. two quadrupoles with focal
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lengths f; and f, separated by a

distance L.

B In thin lens approximation the
L transport matrix is

1 0\ /1 L 1 0 1-L£ L
Mdoublet — (_i 1) (O 1> (_L ]_> — Lfl 1 L
f2 J1 o fr - fa

1 1 1 L
with the total focal length —— =

1 S IL f2 N J1 f2
1 L

B Alternating gradient focusing seems overall focusing

B This is only valid in thin lens approximation 20
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with the transfer

matrices

&

B Consider defocusing quad

“sandwiched” by two focusing
quads with focal lengths * f.

B Symmetric transfer matrix from

center to center of focusing quads

L L Mropo = Muqr - Marit, - Mqp - Marite - MuqQr

1 0 1 L 1 0
MHQF — (_% 1) ) Mdrift — (O 1) ) MQD — (% 1)
B The total transfer matrix is
B _ # 2L(1 + )
Mropo = L lLy -1 |
2 /7 2f

2
2f 21
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 General solutions of Hill’s equations
2 Floguet theory

1 Betatron functions

 Transfer matrices revisited
-1 General and periodic cell

d General transport of betatron functions
— Drift, beam waist

A Normalized coordinates

JOff-momentum particles
—1Effect from dipoles and quadrupoles
—1Dispersion equation
13x3 transfer matrices

22
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n equations ©)

"+ Ky(s)x =
v+ Ky(s)y =

Betatron equations are linear

0
0
with periodic coefficients
K.(s) = K:(s+C), Ky(s)=Ky(s+C)
Floguet theorem states that the solutions are

u(s) = Aw(s) cos(y(s) + o)

where w(s), w(s) are periodic with the same period

w(s) =w(s+C), ¥(s) = (s +C)

Note that solutions resemble the one of harmonic oscillator

u(s) = Acos(¥(s) + o)

Substitute solution in Betatron equations

u’ +K(s) u = AQuw'Y +wy’) sin(y+1hg) + A(w” —wyp"? + Kw) cos(1)+1)y) = 0

o _J N _J
n'g ~v"

0 0

23



« By multiplying with w the coefficient of sin
2w w4+ w?

» Replace y’ In the coefficient of cos and obtain

« Define the Betatron or Twiss or lattice functions (Courant-Snyder

Eicaywyn otn ®uoiki Twv EmiTaxuvtwy

Integrate to get

parameters)

wi') =

w? (W + Kyw) =1

w(s)

~ 1dpB(s)
2 ds

1+ a?(s)
B(s)

24
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« The on-momentum linear betatron motion of a particle is

described by
u(s) = v/eB(s) cos(w(s) + o)
with a, 3, ~ythe twiss functions a(s) = —6(28)/, v = ! ;?S()S)Q
Y the betatron phase (s) = CEZ)

and the beta function 0 is defined by the envelope equation
zﬁﬁ// . 6/2 ‘|‘4ﬁ2K — 4
B By differentiation, we have that the angle is

(5) = gy (I(06) + ) + als) costus) + )
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Eliminating the angles by the position and slope we define the
Courant-Snyder invariant

yu?® 4+ 2aun’ + Bu'? = e
This is an ellipse in phase space with area z¢
The twiss functions «, 3, ~ya geometric meaning

4 —Q — 2
\/; tan(2¢) = aﬁ

The beam envelope is
E(s) = \/€B(s)

The beam divergence

A(s) = Vey(s)

26
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« From equation for position and angle we have

, sin(Y(s) + 1) =

Uu
cos(1p(s) +vo) =
VeB(s)
« Expand the trigonometric formulas and set ((0)=0 to get the
transfer matrix from location 0 to s

(i) = Mo (2t)

L al)
NGO

with
\/ 5(3) (cos Ay + ag sin Ay) B(s) g sin Agp )
Mo—s =
§ (ag— a(s)) cos Ap—(14+aga(s)) sin Ay 3 .
5% Aoy (€cos AY — g sin Aeh)

and Ay = / % the phase advance
0

27
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Consider a periodic cell of length C
The optics functionsare Gy =06(C) =06, ap=a(C) =«

C ds
and the phase advance [ = /
o B(s)

The transfer matrix is
MC:(COS/L—I—CVSHI,M (sin )

—ysin i COS [t — asin [
The cell matrix can be also written as

Mec=Zcosu+ Jsinpu

(87
with 7 = ((1) (1)>1e Twiss matrix J = ( o )I
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* From the periodic transport matrix
and the following stability criterion

'Trace(Me)| < 2

 Inaring, the tune is defined from the 1-turn phase

advance 0 — 1 [ ds
-~ 2m ) B(s)
I.e. number betatron oscillations per
* From transfer matrix for a cell

we get

1 m
COS b = §(m11 + ma2), B = sinlz’ Q=

&

Trace(Mc¢) = 2 cos i

turn




n functions [@]]

 For a general matrix between position 1 and 2

mi1  Mi2 ] ™Moo —M12
M, sy = ( )and the inverse M5, = ( )

mo1 1MM22 — 121 mi1

 Equating the invariant at the two locations

2 / 2 2 / /2
€= Vs Usy T 20‘82“82“32 =+ 532U32 = Vs, Us; T 20‘81“81“31 + ﬁ&usl

and eliminating the transverse positions and angles

2 2
6 miq —2mi1my2 mis 15
M11Mo2 + M12Ma1  —M22M12 8}
2 2
v/ ., M3 2Mma22ma1 Mg v/
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Q

I

|
E
’—l
&
i
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 Consider a drift with length s

o 1 s
e The transfer matrix Is Marits = (O 1
1 —2s s?
» The betatron transport matrix is 01 0
0 0 1
from which
B(s) = Bo—2sa0+ 57 :
a(s) = ag— s
a

Y(s) = Y

31
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\tron transport

g _a) the matrix

o Consider the beta matrix B = (

mi1 Mi9

Mo = (mm m22> and its transpose M7, = <m11 m21>

mio2 Ma2
e |t can be shown that
T
BQ — M1_>2 ‘ Bl ‘ M1—>2

 Application in the case of the drift
o . T . 1 s 5() — 1 0
B = Marite - Bo - Maige = (o 1) (—ao Y0 ) (s 1)

and B— (50 — 2sap + sy —ag + 370)
—Qp + S0 Yo

32



Eicaywyn otn ®uoiki Twv EmiTaxuvtwy

e For beam waist =0 and occurs at s
= ooV

 Beta function grows quadratically

and IS minimum In waist
2

B(s) :504-%

B The beta at the waste for having beta minimum

in the middle of a drift with length L is
L/2 ds
0 ()

which is 7/2 when o — 0. Thus, for a drift

B The phase advance of a driftis © =

dj(s)

=0

dBo

L
b =3

L

= arctan(—

200

p==

)

33
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omentum particles @

Up to now all particles had the same momentum P,

What happens for off-momentum particles, i.e. particles with
momentum P,+4P?

Consider a dipole with field B and
bending radius p b
0

Recall that the magnetic rigidity is Bp = —

and for off-momentum particles q

Py + AP A AP
B(p+ Ap) = OJ; = pp:?o

Considering the effective length of the dipole unchanged
A6 Ap AP

0p=less =const. = pA0+0Ap=0= — = —— = ———

0 Y P()
Off-momentum particles get different deflection (different orbit)

AP
A= 0=
0=—0 )
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Consider a quadrupole with gradient G
Recall that the normalized gradient is

‘es and quadrupoles

V

_4G
=7
and for off-momentum particles
dK qG AP
AK = —AP = —
dP P Py
Off-momentum particle gets different focusing
AP
AK = —K—
P

This is equivalent to the effect of optical lenses on
light of different wavelengths

35
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Consider the equations of motion for off-momentum particles

1 AP
p(s) P

The solution is a sum of the homogeneous equation (on-
momentum) and the inhomogeneous (off-momentum)

v(s) = xpu(s) +x1(s)

In that way, the equations of motion are split in two parts

" + K, (s)x =

vy + Ky(s)rg = 0
. 1 AP
a7 + Ko(s)zr = o5) P
The dispersion function can be defined as
e o Do) — Z18)
The dispersion equation is (s) = AP/P

D"(s) + Kz(s) D(s) = ——

36
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nforabend [@)]

Simple solution by considering motion through a sector dipole
with constant bending radius p

1 1
The dispersion equation becomes D" (s) + ?D(S) — p

The solution of the homogeneous is harmonic with frequency ;

A particular solution for the inhomogeneous is D,, = constant
and we get by replacing D, = p

Setting D(0) = D, and D’(0) = Dy’, the solutions for dispersion
dare

D(s) = Dy cos(p) + Djp sm(;) + p(1 — cos(;))
' - Do sin ! cos(2) + sin(2
D) = =2sin(3)+ Dhoos() +sin)

37
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z(s) z(s0) D(s) Dy
z'(s) | = Maxs | «’(s0) (D’(8)> = M3 (D6>
Ap/p Ap/p and

solution @)

General solution possible with perturbation theory and use of Green functions

Vi C(s) S(s) o
For a general matrix C”(s) S(S)’ the solution is

S C = S S =
D(s) = S(s) / ) 45+ C(s) / (5) 43
S0 p(S) SO p(S)
One can verify that this solution indeed satisfies the differential equation of
the dispersion (and the sector bend) C(s) S(s) D(s)
The general Betatron solutions can Msyz = | C'(s) S'(s) D'(s)
be obtained by 3X3 transfer 0 0 1
matrices including dispersion AP
z(s) =xp(s)+ D(s)—
Recalling that P

38
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 For drifts and quadrupoles which do not create dispersion the
3x3 transfer matrices are just

0

M
Mdrift,quad — 22 0
0 0 1

 For the deflecting plane of a sector bend we have seen that the

matrix is
cos  psinf p(1 —cosh)

Meoctor = —% sinf cos6 sin 6
0 0 1

and In the non-deflecting plane is just a drift.

39



Eicaywyn otn ®uoiki Twv EmiTaxuvtwy

Synchrotron magnets have focusing and bending included in
their body.

From the solution of the sector bend, by replacing 1/p with

1
VK = /= —k
0
sin 1—cos
COs Y Nice pKw
ForK>0 Mgyr = | —vKsiny cosv s
0 0 1
sinh ¢ 1—cosh ¢
( cosh VIK] PIK]
For K<0 Msyp = v/ |K|sinh ) cosh ;m—}llel

\ 0 0 1
with w:\/\kJriQ\l
0

40
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angular magnet

The end field of a rectangular magnet is simply the one of a
quadrupole. The transfer matrix for the edges is

1 0 O
Medge — % tan(@/Q) 1 0O
0 0 1
The transfer matrix for the body of the magnet is like for the
sector bend Miect = Medge * Msect * Medge

The total transfer matrix 1s
1 psin® p(1 — cosb)
Meet =0 1 2tan(6/2)
0 0 1

41
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« Off-momentum particles are not oscillating around design orbit,
but around chromatic closed orbit

 Distance from the design orbit depends linearly with momentum
' ' AP
spread and dispersion — D(s)?

Design orbit

On-momentum

particle trajectory

Off-momentum
particle trajectory

42
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 Periodic lattices in circular accelerators
Periodic solutions for beta function and dispersion
Symmetric solution

« FODO cell

Betatron functions and phase advances
Optimum betatron functions

General FODO cell and stability
Solution for dispersion

Dispersion supressors

 General periodic solutions for the dispersion
* Tune and Working point
« Matching the optics

43
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Bo

Consider two points s, and s, for which the magnetic structure is
repeated.

The optical function follow periodicity conditions

Bo = B(s0) = B(s1), ao = a(so) = a(s1)
Do = D(so) = D(s1) , Dy = D'(s0) = D'(s1)

The beta matrix at this pointis B0 = (_ﬂ o _0‘0\
Consider the transfer matrix from sy to s, Mi_a =

T Bo — Q0 mi1  Mi2 Bo —Q mi1 Mm21
= M0—>1'BO'M0—>1 = —
aQ 70 ma21 1MM22 — Qg Y0 mi2  M22

The solution for the optics functions is

2m12
Bo = .
\/2 mll 2m12m21 Mmoo
miyp — ma2

871 =

2
\/2 mll 2m12m21 m22

with the condition 2 — mi; — 2miama; — m3, > 0

44



dispersion @)

 Consider the 3x3 matrix for propagating dispersion
between s, and s,

Dy mi1 M1z M3 Dy
/ /
ol =1 mo1 moa mos D,

1 0 0 1 1

 Solve for the dispersion and its derivative to get

mo1mas + mas(l —mqq)

/ —
D, = 5
— MM11 — M22

/
mi2Dy + mys
Dy =

1—m11

with the conditions  mi1 +mae2 #2 and my; #1

Eicaywyn otn ®uoiki Twv EmiTaxuvtwy
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« Consider two points Syand S, for which the lattice is mirror
symmetric

» The optical function follow periodicity conditions
a(sg) = a(sy) =0
D/(So) = D/(Sl) =0
. B, = 50 0 By = 61 0
» The beta matrices at Syand S, are '=\o 1/8) "= \o 18
 Considering the transfer matrix between Syand S,
_ ¢ 0O\ [(mi1 mi2\ (B O mi1 Mo
b= Mo_>1'Bo°ME‘)F_>1 - (01 1/51) B <m21 mzz) (0 1/50) (m12 m22)

» The solution for the optics functions is

M 12722 1 mqo
Bo = 4/— and #] = ———
21111 50 maq

with the condition M2 0 and 22 >0
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maq mi1
46
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r dispersion

 Consider the 3x3 matrix for propagating dispersion
between s,and s,

D(s1) mi1 M1z Mi3 D(sop)

0 = | m21 Mo Mo3 0

1 0 0 1 1

 Solve for the dispersion in the two locations
ma23
D - %
(SO) maj

D(s1) = _ eS| m13
mai

 |Imposing certain values for beta and dispersion,
quadrupoles can be adjusted in order to get a solution

&

47
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Con5|der a general periodic structure of length 2L which

contains N cells. The transfer matrix can be written as
M(s+ N -2L|s) = M(s+ 2L|s)"

The periodic structure can be expressed as
M =ZTcosu+ Jsinpu

with 7= (_O‘ Y.
Y «
Note that because det (M) =1 — By —a* =1
Note also that J° = —
By using de Moivre’s formula
MY = (T cosp+ Tsinp)® =T cos(Np) + T sin(Np)

* We have the following general stability criterion
Trace(M™)| = 2cos(Np) < 2
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* FODO is the simplest basic structure

o Half focusing quadrupole (F) + Drift (O) + Defocusing
quadrupole (D) + Drift (O)

Dipoles can be added in drifts for bending

Periodic lattice with mirror symmetry in the center

Cell period from center to center of focusing quadrupole
The most common structure is accelerators

ﬂ \ )

o O O o

S

QF1/2 ' QD U QF,/>

7 |

1 L L 1

FODO period
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 Restrict study In thin lens approximation for simplicity
« FODO symmetric from any point to any point separated by 2L

« Useful to start and end at center of QF or QD, due to mirror
symmetry

e The transfer matrix is
Mropo = Muqr - Marift - Mqp - Maritt - Muqr
and we have

L’ L
_ L 91+ L

Mropo = | , ,. %7, ( L22f) |
(L= 27)  1-5p

where we set for = —fqp = [ for a symmetric FODO
Note that diagonal elements are equal due to mirror symmetry

B _ (ad+bc  2bd _f(a b _(d b
MtOt_MT'M_( 2ac ad—l—cb) M_(c d) and M’"_(c a>5o
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a FODO @)

« By using the formulas for the symmetric optics functions

Gy = 2myo and ag = mi1 — M22
\/2 — m%l — 2m12m21 — m%Q \/2 — m%l — 2m12m21 — m%Q
we get the beta on the center of the focusing quad
k(k + 1
ﬁ+=L\/( > 1) with k= f/L > 1
/‘{/ —_

« Starting in the center of the defocusing quad (simply setting f to -f)

_ k(k—1)
7 _L\/h:Q—l

 Solutions for both horizontal and vertical plane
Inthe center of QF (3, = 87 and B, = 3~
Inthe center of QD B, = 8~ and 3, = 37

« Knowing the beta functions at one point, their evolution can be
determined through the FODO cell
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NS evolution @

Betatron functions evolution in a FODO cell

B 4.4
M 1 1 1
L1 L1 L1
. qlﬂl
1
181 - - Lk
0 - 1 1 1 1 1 1 1 1 1 1 a0
= 1 . ] 4 b | T k| E
DETAHE |al

52



ODO

* For a symmetric cell, the transfer matrix can be written as

COS ¢ (3 sin ¢
Mesym = (—% sing  cos ¢ )

» S0 the phase advance is

L? 22 1
Cosgb:l—ZF:%KQ or sin§:E
 This imposes the condition « > 1 which means that
the focal length should be smaller than the distance

petween quads

For x — 1, the beta function becomes infinite, so In
netween there should be a minimum

Eicaywyn otn ®uoiki Twv EmiTaxuvtwy
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ctions Ina FODO

Start from the solution for beta in the focusing quad
g+ — Llﬁ)(/ﬁl + 1)
VK2 —1
- - = d/6—|_ 2
Take the derivative to vanish — =0 — kg — kg — 1 =10
Y
The solution for the focusing strength is

1 1
= —-x /- +1~1.6180
Ko 2 4‘|—

So the optimum phase advance Is ¢y ~ 76.345°

This solution however cannot minimize the betatron
function in both planes

It is good only for flat beams €z >> €, or €, >> €,
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ons for round beams @

Consider a round beam €, ~ ¢,

The maximum beam acceptance Is obtained by
minimizing quadratic sum of the envelopes

E; + E; = e.0: + €,0y ~ €(B2 + 3,)
The minimum is determined by %(ﬁ+ +067)=0
The minimum is reached for x, = /2
and the optimum phase Is ¢, = 90°
The betatron functions are @ﬂ;t = L(2+2)

In order to fit an aperture of radius R
E.+E, =R =¢(f"+087)=¢€4L
R2

The maximum emittance IS €max = 17
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nctions in a FODO

» Scaling of the betatron functions with respect to the

optimum values

gt _ w41 BT k(1)
ﬁc—;)t (2 T \/5)\/“2 — 1 ﬁo_pt (2 — \/5)\//432 — 1
 Scaling Is independent of L

* |t only depends on the ratio of the ,
focal length and L 55|

« The distance can be adjustedasa .
free parameter ?|

e AS the maximum beta functions |
are scaled linearly with L 05|

e The maximum beam size in a S
FODO cell scales like with /T,
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ity criterion revisited

« Consider a general periodic structure of length 2L which
contains N cells. The transfer matrix can be written as

M(s+ N -2L|s) = M(s+ 2L|s)"
The periodic structure can be expressed as
M =T cosu—+ Jsinpu

with J:(O‘ g
L

Note that because det(M) =1 — By —a’* =1

Note also that J* = —Z

By using de Moivre’s formula

MY = (Tcosp+ Jsinp) =T cos(Nu) + J sin(Np)
* We have the following general stability criterion

' Trace(M™)| = 2cos(Ng) < 2 57
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 So far considered transformation matrix for equal
strength quadrupoles

» The general transformation matrix for a FODO cell

1 0\ /1 L 1 0 1 - L
=9 o D) ()=
- 1J\0 1)\-% 1 -7 1=

with L 1 1 L
’oh 2 ke

» Multiplication with the reverse matrix i, = (

gives

L
1—1E

-
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eral FODO cell @

Setting % — F and — % =D we have hat the transfer

matrix for a half cell i1s

M B 1—F L
/2FODO =\ _L(F - D+ FD) 1+D

» Equating this with the y (5 eosn/2 /BTB sinp/2
betatron transfer matrix 1/2EODO = ~tnp 5% cos 12
we have

0<F-D+FD=sin*pt/2<1
DA lJ.z 180°
1 < 0<D-F+FD=sinp /2<1

\\§Ax-180° » The limits of the stable region

~ stable region  JIVe @ necktie

D
hz=0 sin M+/2—O—>F—ﬁ sin ,LL+/2—1—>F—1
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o

"FsinQM—/onﬁD:H_F sin?p”/2=1—-D=1



&

consider =L/p<<1I
e Now the transfer matrix IS Muropo = Muar - Msector - Muap

which gives
1 0 0\ ({1 L L 1 0 0
1 2p 1
Muropo =5 1 0 0 1 =2 -5 1.0

0 0 1 0 0 1 0 0 1

¢ and after multiplication

i L L2

§ : Lf LL L (2p)L

% Muropo = | —% 1+ 7 Z(1+457)
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« Consider mirror symmetry conditions, I.e. the dispersion
derivative vanishes in the middle of quads

(770> = Muropo /77;)
1 \ 1

 Solving for the dispersion in the entrance and exit

L? 12
77Jr = %’1(2"3"‘ 1) and n~ = %%(2/43 — 1) with k= f/L
» We choose an optimum reference lattice where ko = v/2
L? 1,2
_I_ p— - —
nopt — %(4 + \/5) and nopt = %(4 — \/5)
—|_ T —
and the ratio 1 _ F2st 1) om” _ kR2e—1)

77C—|)_pt (4 + \/5) Nopt B (4 — \/5)
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Pressors

Dispersion has to be eliminated in special areas like

Injection, extraction or interaction points (orbit
Independent to momentum spread)

Use dispersion suppressors

Two methods for suppressing dispersion
Eliminate two dipoles in a FODO cell (missing dipole)
Set last dipoles with Dispersion

different bending angles Arc suppressor
1

&

Straight

= 9(1__4shf2MHFODO) — I- " l
. T 1T T

4sin® urroDO
For equal bending angle

dipoles the FODO phase

advance should be equal _I.\-‘-\-‘_\-‘ I
to m/2



e dispersion

Introduce Floquet d\Zriables .
1
U= — , U =" =u+\Bu, ¢= w °
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&

d
VB o VBTV

« The Hill’s equations are written 52 + V2U =0
e The solutions are the ones of an harmonic oscillator

a u/

B(s)

uul
U cos(v
) = e o) A — (N
U — sin(vo) O/ ; NYWL
 For the dispersion solutionu = %%, the inhomogeneous equation
In Floquet variables is written
d2D . 253/2
a@ T

e Thisisa forced harmonlc oscnlator with solution
D(s) = j{ : cos v(p(s) — ¢(o) + m)]do
281n 7w

* Note the resonance condltlons for integer tunes!!!
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Ing point ©)

 Inaring, the tune is defined from the 1-turn phase

advance

1 ds
Gow = 5 7§ B (5)

I.e. number betatron oscillations per turn

Taking the average of the betatron tune around the ring

we have in smooth approximation

C R
SRR

Extremely useful formula for deriving scaling laws

The position of the tunes in a diagram of horizontal
versus vertical tune is called a working point

The tunes are imposed by the choice of the quadrupole
strengths

One should try to avoid resonance conditions
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e Space

=7 Tunability: 1 unit in
~ioi7 .| horizontal, 3 units in vertical

- - -
. -
6.8 = \“ "-.._H_
-

66 .77 Tl - -

LR e e e (2 units due to bump/chicane
6.4 S-l . m L= S IR IR 4

........ e T - .

A e I sl e perturbation)

62 -0 T 1e=w] L R e
ol A VA B bR

fes=cc_. I 2 I .

e m T o= s ‘_J_.,—'—'-r,..-ff

v 0 -k | — Structural resonances (Up
58 T m e J_..-}FH =k L=

£ - W ==L | T = - “-3-’
4

LA

&
]

1

P Sootl B ff‘f}%e—;;4,:;:>:“1“~*-“?=: to 4th order)
.-—a»{ —All other resonances (up to
i},»:ff:'”iéf-:”:“""‘5“ zy. 1 3rdorder)

Vertical Tune
L
=
#h
i
E il
w,
“T
[}
&,

| !
| I I
- et 1=~ _ 1 -
- - - | b I |_.""-|._\_ -‘.\
2T =" | ) I I T
-~ |
-5 o - o1 A I I -
AT | Xl i I I
W Tl TR L . .-t =7 - - .
= - - . T"'-\-Lf._ _FJ-.-'-I | - - -
48 Tl el e \\orking points considered
’ e | - L = ML B 1 -
.I'T-

Y
46 | (1,3 "Iswetl
{3_)_.-'— # \'\.r'-'

Wit 1‘,,‘# i :‘:\,-:vi"‘“-—ﬁ- ® (630,580) - Old
] S ? B ¢ (6.23,5.24)
2F L7 T Lo | - - .
w28 N N e (6.23,6.20) - Nominal
6 61 62 63 64 65 66 67 63 69 7 .(6_40,6.30)_A|ternative
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Horizontal Tune
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optics @)
Optical function at the entrance and end of accelerator may be

fixed (pre-injector, or experiment upstream)

Evolution of optical functions determined by magnets through
transport matrices

Requirements for aperture constrain optics functions all along the
accelerator

The procedure for choosing the quadrupole strengths in order to
achieve all optics function constraints is called matching of beam
optics

Solution is given by numerical simulations with dedicated programs
(MAD, TRANSPORT, SAD, BETA, BEAMOPTICS) through
multi-variable minimization algorithms

magnet structure

5(0) B(end)
a(0) a(end)
v(0) K K, Ks K, Ks ... IKy v(end) -




SNS ring

« First find the strengths of
the two arc quadrupole
families to get an horizontal Working point (6.40,6.30)
phase advance of 2zt and
using the vertical phase 30
advance as a parameter

« Then match the straight

section with arc by using  _
the two doublet quadrupole =
families and the matching 10
quad at the end of the arc in
order to get the correct tune
without exceeding the 0
maximum beta function
constraints

» Retune arc quads to get
correct tunes [ . . . . ‘ e

Always keep beta, S [m]
dispersion within

acceptance range and

quadrupole strength below

design values

1 [m]
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lattice upgrade

v 4 S

| I | | 1 1

| I | | 1 1

| I | | 1 1

! : - : ! : !

| I | | 1 1

A v 4 v A v v
BIp1 Po ; Psp Po ; BIp2 ;
ajp1 =0, @0 > asp =0, @0 > ajp2 =0,
nip1 = \/Brp1 H, 77? ’ ’7;913 =\/Bsp M, 77? ’ nip2 =/ Brp2 H
nip1 =0 "o nsp =0 "o Nrp2 =0

o Purpose to minimize emittance at N 2555 A iomsos  OPTICAL FUNCTIONS ExiGam™2= 4 594E-18

the insertion device (increase O U S S SO O S S
brilliance) by imposing specific §, I
a, D and D’ values at the entrance " |
of the dipole
5 * Usually need to create achromat bl ]
s (dispersion equal to 0) in the
= straight section (Double Bend N e _
E Achromat — DBA, Triple Bend
e Achromat —TBA,...) LA N
s « Tryto minimize variation of beta I N A R
¢  function in the cell by tuning ol ]
5 quadrupoles accordingly ﬂ |
& s 0 15 0 U"Qjé _______ 30 28 40 45 50
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B (m), B (m)

FODO arc with 3+3 super-
conducting bending magnets
and 2 quadrupoles in =
between -
Beta functions between 30
and 180m

5000, E':oc;s\ilgfsieq?gnsbL?i|;%0=%%3&?3gifi1%fbufc IP8=100%) _  _  werwesm. ¢

s (m)

200.
182.4
164.
146.
128.
110. o
92. -
74. -
56. -
38. ~

20.

C 0 gl )

LHC V6.4 Beam1 Arc CellCELL.12.B1 450GeV Injection
Crossir:nq Bum1ps(IP1l=IP5=1'OO‘Vo IP|2=100°{0 IP8=1'00%) .

T T T T T T T T T T T
0.0 10 20. 30. 40. 50. 60. 70. 80. 90. 100. 110. 120

 Collision points creating beam
waists with betas of 0.5m
using super-conducting
quadrupoles in triplets

» Huge beta functions on
triplets
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